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Finite-difference and tinite-volume formulations are analyzed in order to clear up the 
confusion concerning their application to the numerical solution of conservation laws. A new 
coordinate-free formulation of systems of conservation laws is developed, which clearly 
distinguishes the role of physical vectors from that of algebraic vectors which characterize the 
system. The analysis considers general types of equations-potential, Euler, and Navier- 
Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, 
consistent nomenclature for both formulations. Grid motion due to a non-inertial reference 
frame as well as flow adaptation is covered. In comparing the two formulations, it is found 
useful to distinguish between differences in numerical methods and differences in grid defini- 
tion. The former plays a role for non-Cartesian grids and results in only cosmetic differences 
in the manner in which geometric terms are handled. The differences in grid definition for the 
two formulations is found to be more important, since it affects the manner in which 
boundary conditions, zonal procedures, and grid singularities are handled at computational 
boundaries. The proper interpretation of strong and weak conservation-law forms for 
quasi-one-dimensional and axisymmetric flows is brought out. 0 1989 Academic P~CSS, I X .  

INTRODUCTION 

Many current algorithms in computational fluid dynamics are based on the 
numerical solution of conservation laws. This choice is motivated by several con- 
siderations, the chief one being the ability to treat flow discontinuities automati- 
cally. In an earlier paper [ 1 ] the author treated the differential formulation of the 
conservation equations. This formulation forms the basis for finite-difference algo- 
rithms, which are historically very old. The more fundamental integral formulation 
is the basis for finite-volume algorithms. These appeared more recently (probably 
the earliest is found in [2]) and are not as well known. There appears to be some 
confusion and ignorance concerning the relation of these two approaches. The 
primary purpose of this paper is to shed some light on this subject. For this 
purpose, it is useful to distinguish between the method of approach (integral vs 
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differential) and grid definition (grid points represent vertices or centers of cells). It 
turns out that the differences in method only play a role for non-Cartesian grids 
and manifest themselves in the manner in which the geometry of the grid is 
handled. The effect on the numerical results is generally small in most cases. The 
differences in grid definition are important at computational boundaries, where they 
determine the manner in which boundary conditions, zonal procedures, and grid 
singularities are handled. 

To provide the greatest possible utility, a unified presentation covering all classes 
of equations is given. Both approaches are described using a well-defined, consistent 
nomenclature. This is accomplished by employing geometric concepts which lead to 
an unorthodox treatment of the differential formulation. Thus, when dealing with 
coordinate transformations, terms such as volumes, areas, and normal velocity 
components are used instead of Jacobians, metrics, and contravariant velocity com- 
ponents. The general case of 3-dimensional unsteady flow with time-varying grids 
is considered and specialized to other cases when necessary. Only those aspects of 
algorithms that relate to the comparison of the two approaches are presented. 

In order to make the discussion more physical and compact, vector notation is 
used throughout. Here the word vector refers to physical vectors (e.g., velocity or 
momentum) as distinguished from algebraic vectors (e.g., the set of conservative 
variables). It is customary to replace the vector momentum equation by its scalar 
components, so that only algebraic uectors and matrices are encountered. To allow 
for arbitrary scalar decompositions and to preserve the compactness, the momen- 
tum equation is here treated as a single vector equation. This necessitates the intro- 
duction of a novel treatment of flux vectors and flux Jacobian matrices solely in 
terms of physical vectors and independent of a coordinate system. 

The integral formulation of general conservation laws is presented first and is 
then used to derive the differential formulation. The new vector formulation of flux 
Jacobian matrices follows, with applications to Roe averaging and flux-vector split- 
ting. The next section presents the discretization of the equations, beginning with 
a careful discussion of grid definition. The general characteristics of standard linite- 
difference methods are described, and some of the inaccuracies arising from the 
treatment of the grid geometry are enumerated. The discussion of finite-volume 
methods first details various geometric constructions, including a unified presenta- 
tion of different methods to calculate the cell volume. The three main types of 
equations-Euler, Navier-Stokes, and potential are each discussed in turn, and 
specific comparisons of the two approaches are made. Both centered and upwind 
treatments of inviscid flux terms are considered. The section on moving grids 
presents in a unified way the combined effects of a non-inertial reference frame and 
grid motion with respect to that frame due to flow adaptation. The role of the two 
types of grids in formulating wall boundary conditions, zonal boundaries, and grid 
singularities is covered in the next section. The following section discusses strong 
and weak conservation-law forms and their relation to quasi-one-dimensional and 
axisymmetric flow. The concluding section contains brief discussions of hybrid 
methods and the relation of finite-element and finite-volume methods. 
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FORMULATION OF CONSERVATION LAWS 

Integral Formulation 

Let the position vector r of a point in space and time t be defined with respect 
to an inertial reference frame. Since physical conservation only has meaning over a 
finite region of space and a finite interval of time, we divide the flow region into 
contiguous cells which can vary with time. The general form of a conservation law 
for a given cell is 

iv,,,, udV-IV(t,, udV+lty fq,, n.Fdsdt=j,; s,,,, Pdvdty (1) 
where V(t) is the cell volume, n dS( t) is a vector element of surface area with out- 
ward normal n, U is a conservative variable per unit volume, F is the flux of U per 
unit area per unit time, and P is the rate of production of U per unit volume per 
unit time. If U and P are scalars, then F is a vector; while if U and P are vectors, 
F is a tensor. An example of P is the rate of production of a chemical species. Let 
u and v(t) be the fluid velocity and surface element velocity, respectively. The flux 
F can then be written as 

F=(u-v)U+G, (2) 

where the first term is the convection of U relative to the surface element, and G 
stands for the non-convective part of the flux. It is often convenient to define the 
cell geometry with respect to a non-inertial reference frame. In this case, let r,,(t), 
v,(t), and n(t) be the position vector of the origin, velocity, and angular velocity 
of the non-inertial frame relative to the inertial frame. Then v can be written as 

v = v, + v,, (3) 

where 

v, = b(t) + a(t) x Cr - rdt)l, (4) 

and v,(t) is the surface element velocity relative to the non-inertial frame, but 
expressed in the inertial frame. The velocity v, can be determined by the motion of 
a well-defined surface, or some flow gradients (adaptive grid). The case u=v 
corresponds to a Lagrangian cell. 

The state of the fluid is specified in terms of a primary or primitive variable Q. 
An example of a flow governed by a single conservation law is potential flow, for 
which Q is the velocity potential 4 and U is the density p. In general the flow is 
governed by a system of conservation laws, in which case U, F, P, and Q represent 
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a set of variables. The primitive variables Q for the conservation of mass, momen- 
tum, and energy are p, u, and the specific internal energy E. The corresponding con- 
servative variables U are p, the momentum per unit volume m = pu, and the total 
energy per unit volume e = P(E + $I . u). For nonequilibrium flow, the partial den- 
sity of various species and the energy of internal states of species can be additional 
variables. In some turbulence models, additional variables for turbulent quantities 
may be required. In order to close the system of equations one needs an equation 
of state and possibly additional relations to define transport coefficients and the 
production terms P. 

For the Euler equations, both F and U are functions of Q, and consequently F 
can be expressed as a function of U. For the Navier-Stokes equations, F depends 
additionally on VQ, where the notation VQ denotes the gradient of Q, its transpose, 
or the divergence of Q. (If thermal radiation is present, F can involve integrals of 
Q, and additional integro-differential equations would be required. This case is not 
discussed in this paper.) For potential flow, both F and U also depend on VQ as 
well as 8Q/& in the unsteady case. For all flows, an additional explicit dependence 
on r and t comes from the surface element velocity v. We thus note that the integral 
formulation may require spatial and temporal derivatives of Q to be calculated. 

If we assume all variables are continuous in time, then Eq. (1) reduces to 

$ j, UdV+$s n.FdS= j, PdV. (5) 

This is the usual statement of a conservation law. For steady-flow calculations, the 
first term is absent. Even when it is employed in time asymptotic marching techni- 
ques, it need not be treated accurately. This poses less stringent conditions on the 
numerical algorithm. In many applications, Eq. (5) is only satisfied in a global 
sense, over the complete flow region. In this sense it is used as an overall check on 
a numerical method. There are additional global conservation laws that can be 
derived under special assumptions that are sometimes used as constraints in an 
algorithm. Examples are conservation of entropy (inviscid, continuous flows), 
kinetic energy (incompressible, inviscid flow), and vorticity (plane incompressible 
flow). In this paper only local conservation laws that serve to define the basic 
numerical method will be considered. 

Certain geometric identities can be derived as special cases of Eq. (1). The 
condition that the cell is closed is given by 

Lf 
ndS=O. (6) 

s 

The relative rigid body motion of two frames of reference is expressed by 

f 
n.v,dS=O. 

s (7) 
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Using Eqs. (4) and (6), this can be replaced by 

0 rxndS=O. 
s 

The conservation of volume for a time-varying cell is given by 

V(t2)- V(tl)=[” I,,, n.v,dSdt. 
11 

(8) 

An additional geometric constraint is that the sum of the cell volumes must equal 
the total volume of the flow region. 

A main motivation for the conservative formulation is to capture flow discon- 
tinuities in inviscid flow. The jump conditions across such discontinuities are just 
limiting forms of the integral relations. Applying Eq. (5) to a pill box with faces AS, 
and AS2 stradding a surface of discontinuity whose normal in a positive direction 
is n, we obtain in the limit the jump conditions 

s n.FdS= s 
n.FdS. (10) 

ASI A.% 

Actually, since the geometry of space is continuous, Eq. (10) can be replaced by the 
weaker relation 

n.(F,--F,)=O. (11) 

It is possible for algorithms to satisfy the weak form of the jump conditions and 
violate strict conservation. 

Differential Formulation 

The differential formulation is obtained by applying Eq. (5) to a differential cell 
in physical space which is the image of the computational cell dC; du d[ resulting 
from the coordinate transformation 

r = r(5, rl, i, T) 
t = T. (12) 

Let SC dq d[ be the surface area vector in the positive 5 direction (with analogous 
definitions for the other directions), and V dr dq d[ be the volume of the differential 
cell. Equation (5) then takes the form 

(UV),+ (f&F),+ (WF),+(Sc.F),= PV, (13) 
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where subscripts indicate partial differentiation, 

s = rq x ri 

sq = ri x r5 (14) 

Si=r5xr,, 

and 

V=re.rsxrr. (15) 

The quantity V is also equal to the Jacobian J or J-’ of the coordinate transforma- 
tion. 

In expressing U, F, and P as functions of Q and its derivatives, the relations 

v=r,, (16) 

VQ=V5Q,+VvQ,+RQi (17) 

are used, where 

vg = s/v, vrj = !P/ v, V[=SfV, (18) 

and 

aQ/at = Qz - rr . VQ. (19) 

From Eq. (19) one can obtain the relations @/at = -rr .V<, etc., for the time 
derivatives of the inverse transformation. Equation (13) can also be written in the 
equivalent “Cartesian” form 

ii, + (PC), + (P), + (F)( = P, (20) 

where 

o= uv, j=5&j’?F, p&S”+ fc = S’ . F, P=PV. 

The geometric identities (6) and (9) become 

(S), + (SV), + (S), = 0 (21) 

and 

V, = (SC .rr)S + (SO .rr)q + (S .r,)*. (22) 

Equation (22) is called the differential statement of the geometric conservation 
law in [3]. Using Eqs. (21) and (22), Eq. (13) can also be written in the quasi- 
conservative form 

U,+Vt.(F;-r,U,)+Vq.(F+r,U,)+V[.(F;-r,U,)=P, (23) 
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where 

F’=uU+G. 

The above form is called the chain rule conservation law form in [4]. 

NEW COORDINATE-FREE TREATMENT OF FLUX VECTORS 

We have seen that Eq. (1) can represent a scalar or vector conservation law. Here 
the word vector refers to a physical vector such as position, velocity, or momentum 
and is represented by a bold faced symbol or an arrow. The related higher order 
quantity is a tensor. It is also convenient to express a set of variables as an 
algebraic oector and represent it as a column or a row. The related higher order 
quantity is a matrix. Since all calculations must ultimately be done with numbers, 
and to avoid the confusion between the two uses of the term vector, the momentum 
conservation law is normally treated as three scalar laws for the components of the 
momentum. A compactness and greater physical insight can be obtained by retain- 
ing the physical vectors as components of the algebraic vectors. The procedure will 
be illustrated for the inviscid flow of a perfect gas. 

Vector Formulation of Flux Jacobian Matrices 

The set of conservative variables U is given by the column vector 

(24) 

Let n be the normal in a positive direction to a cell surface or a coordinate surface. 
One can then define the normal flux component F,, = n . F, the normal velocity 
components u, = n . u and v, = n . v, and the normal relative velocity component 
U’ = n . (u-v) = U, - u,. For inviscid flow, the set of variables F, is given by the 
column vector 

Fn=[;]=[$j;], (25) 

where M, P, and E are the normal flux of mass, momentum, and energy, and p is 
the pressure. 

The oector F, is a non-linear function of the vector U. In many algorithms one 
therefore employs a linearization in time or space. This requires the calculation of 
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dF, in terms of dU. If u, and n are held fixed, the first component of dF,, can be 
written as 

d( pu’) = -v, dp + n . dm. (26) 

This can be rewritten in the form of a matrix multiplication as 4 
d(pu’)=[-v,nO] dm , [ 1 de 

(27) 

where the dot product is implied in multiplying the second element of the row 
vector by the second element of the column vector. Applying the same procedure to 
the other components of dF,,, we can define a flux Jacobian matrix operator A 
satisfying dF,, = A dU, using the convention that in forming the product of a matrix 
element with a vector element, a dot product is implied if each element is either a 
physical vector or a tensor. For a perfect gas satisfying the equation of state 

p = w% rc=y-1, (28) 

the matrix A can then be written as 

- 0, n 0 
A= i&n-u,u un-lcnu+u’I Kn 

(tcb, -H) 24, Hn - Kz4,u 24’ + 1~24, 1 , (29) 
where H= YE + fu . u is the total enthalpy per unit mass, b, = $I. II, and I is the 
identity tensor. 

For some algorithms, one requires the diagonalization of A in the form 
R-‘AR = .4, where /1 is the eigenvalue matrix, and R and R-’ are the right and left 
eigenvector matrices, respectively. For multiple space dimensions one requires a set 
of linearly independent eigenvectors corresponding to a repeated eigenvalue. Let ai 
be an arbitrary set of spatial basis vectors, and ai be the set of reciprocal basis 
vectors satisfying ai. a’= S{, where Si is the Kronecker delta. One can then define 
ani-n.ai, bi=nxai, $,=n.a’, and Is’=nxa’. If #I is an arbitrary scalar, the three 
matrices can be written in the most general form as 

A= [y ; A$ =[1( d) iJ 

ani 1 1 
R= anill + flbi u + cn u-cn , 1 a,,b,+fib,.u H+cu, H-u, 

(30) 

(31) 
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and 
a,(l-b,)-p-‘(l&u) a’,b,u+/?-‘l+ -a,b, 

R-l= i(b, - u,Ic) -i(b2u-n/c) ib2 , (32) 
i(b, + 4~) - f(b,u + n/c) $b, 1 

where c = (yp/p)“* is the speed of sound, b2 = K/C*, and b3 = b2b1. For three dimen- 
sions, /1 is a five by five matrix, while R has five columns and R-’ has five rows. 
Since the basis vectors ai are linearly independent, it follows that the three eigenvec- 
tors corresponding to the repeated eigenvalue 1, are linearly independent. A useful 
choice for the basis vectors is to let one of the ai be parallel to n, so that the corre- 
sponding bi = 0. The remaining a, are then chosen to lie in the plane perpendicular 
to n, so that their corresponding ani= 0. Note that specific normalizations have 
been chosen for all the eigenvectors. Other normalizations may also be found 
useful. 

One can define functions of the matrix A through 

f(A) =fV1) Pl +S@*) p2 +f@3) p39 (33) 

where the projection operators P,, P2, and P3 are matrices satisfying 

R-‘,,,-[p ; il; R-‘P2R=[i ; ;], 

0 0 0 
R-‘P,R= 0 0 0 . [ 1 (34) 

0 0 1 

Examples of f(L) are 1, 111, sgn 3, = [A(/& and il* = (1 k Inl)/2. The formula for PI 
is 

l-b, b -bz 
P, = u,n-b,u b,uu-nn+I -b,u . 1 (35) 

ui-(l+b,)bl (l+b,)u-u,n -b, 

Using the fact that 

1 0 0 

P1+P*+P3=Z= [ 0 I 0 1 , (36) 
0 0 1 

where Z is the unit matrix, one can express the other two projection matrices as 

P*=+[+A/c+z(lfu’/c)-PJ. 
3 

(37) 

All the results obtained so far can be generalized to an arbitrary gas law. 
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In closing, one should note that the structures of matrices R and R-’ are 
different from those of A, P,, P,, and P3, and the dot product convention may not 
necessarily apply to the first two. Actually, the convention is valid when forming the 
product of Rp ’ and a column vector. As an example, the product R- ‘R gives the 
identity matrix. On the other hand, in forming the product RR- ‘, a tensor product 
is implied if each element is a vector. The result is the unit matrix I. 

Roe Averaging 

A large class of upwind-biased numerical approximations to the inviscid flux 
vector F,,, to be discussed in the next section, makes use of the properties of the 
matrix A. In a particular subclass, based on a local spatial linearization, A must be 
evaluated at some average of two neighboring states. Roe [S] suggested a specific 
average which gives the exact difference in flux if the two states correspond to a 
discontinuity. Thus, given two states U, and U, associated with the common 
surface vectors n and v, the Roe averaged state 0 is defined by 

F,(U,)-I;,(U,)=A(8)(U,- u,). (38) 

The notation D implies only those variables that appear explicitly in A. A unique 
state I? can be obtained by noting that the average velocity ii must be some linear 
combination of uL, u,, and n. Upon substituting Eqs. (24), (25), and (29), and 
recalling that II,, uR, and n are arbitrary, independent vectors, one obtains from the 
second component of Eq. (38) 

where 

ii=cru,+(l -a)u,, (39) 

a=Jz/(&+JG). (40) 

Similarly, the third component of Eq. (38) then yields 

A=crH,+(l-a)H,. (41) 

The sound speed, derived from the total enthalpy via c2 = K(H- iu. u), can be 
written as 

C2 = $a(1 - a)(uR - uJ f (uR - uL) + a&. + (1 -a) ci. (42) 

The above derivation is much more direct than that found in [S]. One notes 
from Eq. (42) that F2 is greater than the weighted average of ci and ci. It follows 
from Eq. (30) that for either A2 or &, it is possible that the Roe-averaged 
eigenvalue could lie outside the range determined by the two states L and R. In 
particular, if the normal relative speed is very close to sonic for both states, the 
corresponding eigenvalues could both be of one sign, while the Roe-averaged 
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eigenvalue could have the opposite sign. Some numerical examples illustrating these 
phenomena are found in the Appendix. The implications for algorithms based on 
Roe’s scheme should be studied further. 

Flux- Vector Splitting 

Another subclass of upwind-biased numerical approximations to the inviscid flux 
vector F,, is based on the eigenvalues of A. One notes from Eq. (30) that if lu’l> c, 
all the eigenvalues of A are of one sign, which determines the direction of the 
upwinding. For ju’l < c, the eigenvalues of A are of mixed sign. In flux-vector 
splitting methods the flux oector F,, is split into several parts, each of which has an 
unambiguous direction of upwinding determined by the signs of appropriate 
eigenvalues. The earliest methods utilize the homogeneity property 

F,,=AU (43) 

valid for a gas satisfying 

P = d(E). (44) 

(It is thus valid for a gas that is thermally perfect, but calorically imperfect.) Using 
Eqs. (33) and (43), one can split F,, as 

Fn = I;,, + Fnz + Fn, , (45) 

where 

F,i=IiPilJ. (46) 

For a perfect gas one obtains 

(47) 

This form of flux splitting was first given in [6]. The earlier Steger and Warming 
splitting [7] is of the form 

F,,=F,+ +F,, (48) 

where the forward and backward flux vectors F,+ and F; are obtained from 
Eq. (45) by substituting A+ and A;, respectively. If the normal relative speed is 
sonic or supersonic, one obtains 

F,+ = F,,, F, =0 for u’ 2 c 

F, =F 
(49) 

“3 F,+=O for u’ < -c. 
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One can show that all the eigenvalues of the split flux Jacobian matrices have the 
correct sign in the subsonic region for y < 3. 

The above split fluxes are not continuously differentiable at the zeros of the 
eigenvalues. Van Leer [S] proposed a new form of splitting which makes each split 
flux continuously differentiable and also degenerate for Iu’I < c. The latter condition 
produces one zero eigenvalue for the split flux Jacobians, leading to steady trans- 
onic shock structures with only two interior zones. Equation (49) is still assumed 
valid for Ju’I > c. For lu’l < c, the requirement of continuous differentiability leads 
to the presence of a factor (u’ f c)’ in the formula for F;’ , respectively. The simplest 
splitting of the mass flux satisfying certain symmetry conditions gives 

M’= f -f& (d&c)*. (50) 

The splitting of the momentum flux takes the form 

P’=M’ “-; (u’f2c)n . 
[ 1 (51) 

Note that Eqs. (50) and (51) are valid for a general gas law, with y = pc*/p. In order 
to satisfy the degeneracy condition, the split energy flux must satisfy 

E’ =f(M*, P’, n, v). (52) 

One can show that this is only possible for a perfect gas. The resulting expression is 

Ef =M’ 
{(y- l)U’f2C}2 II” 

w*- 1) 
-y @‘T2c)+i (u.u-ZP) 1 . (53) 

DISCRETIZATION OF CONSERVATION LAWS 

Spatial Discretization 

A primary grid is defined by choosing a set of discrete grid points and connec- 
tions among them. Normally points are chosen to lie on the flow region boundaries. 
The grid also divides the region into a set of contiguous primary cells, where the 
grid points are now cell vertices and the connections form the edges of the faces 
common to neighboring cells. If the shapes of the connections are not precisely 
given, then the edges are not defined uniquely. Normally the connections are 
specified as straight lines. Even when the shapes of the connections are given, the 
shapes of the faces are not uniquely defined in three dimensions. For ordered grids 
the cells are quadrilaterals in two dimensions and hexahedrons in three dimensions. 
Grid points may be specified numerically or analytically. In time-dependent 
algorithms the grid points can advance in time. 
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A secondary grid can be obtained by determining the centers or centroids of the 
primary cells (in a non-unique way) and connecting them across cell faces. The 
secondary grid points also act as vertices of secondary cells. We thus have two 
interlocking grids, with the cell vertices of one being the cell centers of the other. 
One should note that if the primary grid is not sufficiently smooth, a secondary grid 
with straight line connections may not be possible. One can always define a 
secondary grid with piecewise straight connections by determining the centers of the 
faces of each primary cell and connecting them to the cell center with straight lines. 
The role of grids in the finite-difference and finite-volume discretization of the 
equations is examined below. The discussion focuses primarily on stationary grids 
at interior points. The case of moving grids as well as considerations at flow region 
boundaries are covered in subsequent sections. 

Finite-Difference Discretization 

Standard finite-difference methods are based on the discretization of Eq. (20), 
with the geometric quantities included in the definitions of the transformed 
variables. The position vector r and the primary variable Q are defined at the 
primary grid points corresponding to equispaced points in the computational 5, q, 
c space. The geometric quantities defined by Eqs. (14k( 18) are evaluated at each 
grid point from the r data by central-difference approximations. At interior points, 
a conservative difference algorithm is applied in terms of the transformed variables 
defined in Eq. (20). If i, j, k are the integer indices corresponding to the 5, q, { 
coordinates, the spatial difference approximation can always be expressed in the 
form 

(Et), = (p?r+ I/2, j,k - pf- 1/2,j,k)/At, (54) 

where $ I + l/2, j,k iS any UUUWiCal apprOXimatiOU t0 the flUX across the i + f, j, k face 

of the secondary grid. Similar relations hold for the q and [ derivatives. The 
numerical flux can be obtained by central differences or by any of the varieties of 
upwind methods. It can also contain additional artificial terms to stabilize the 
calculation. The time integration of Eq. (20) can be explicit or implicit, may involve 
dimensional splitting, and can involve time linerization to avoid iteration during a 
time step. In the latter instance, the matrix A of Eq. (29) is evaluated at the primary 
grid points. 

The form of Eq. (54) guarantees that when Eq. (20) is summed over all the grid 
points, interior flux terms will cancel. This telescoping property defines conservative 
differencing. For unsteady flow, the summation implies that oi,j,k is an approxima- 
tion to the conserved variable contained in a secondary cell surrounding the 
primary grid point i, j, k. These considerations must be modified for those grid 
points that lie on the flow region boundaries. First of all, the geometric quantities 
must be evaluated using one-sided differences. The flow variables U are calculated 
by applying appropriate boundary conditions. These involve auxiliary equations or 
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characteristic relations which determine which quantities are specified and which 
are related to interior quantities in some manner. 

It is seen that the standard finite-difference approach combines geometric and 
flow variables and subjects the resultant transformed variables to an algebraic treat- 
ment. The flow variables are unknown and can only be determined within some 
truncation errors. On the other hand, for a given coordinate transformation the 
geometric variables obey their own identities which could be satisfied exactly. The 
combined approach can give rise to numerical errors even when the flow is known 
exactly. These will be discussed in more detail in subsequent sections. Some of the 
sources of inaccuracies are: 

1. The geometric identities (21) and (22) may not be precisely satisfied. Since 
the surface area vectors are linear functions of the position vectors in two dimen- 
sions, the discrete form of Eq. (21) will have no truncation error in this case when 
central differences are used throughout. However, in three dimensions the area 
vectors are quadratic functions of the position vectors. Since the product of two 
averages is not equal to the average of two products, truncation errors will be 
present in this case. As a result, the time integration of a uniform flow will result 
in numerical oscillations. The discretization of Eq. (15) will result in secondary cell 
volumes that will not sum to the total volume of the flow region. This can be a 
source of error in unsteady flow calculations. If the grid is undergoing deformation 
with time (v, # 0), the discrete form of Eq. (22) will in general not be satisfied, 
irrespective of how I/ and rr are evaluated. This will give rise to errors in a uniform 
flow even in two dimensions. If the numerical flux is obtained by an upwind 
method, the geometric variables are not treated in a fully centered way. This also 
can produce numerical errors, even in two dimensions. 

2. The calculation of derivatives from Eqs. (17)-(19) can give rise to inac- 
curacies. In potential flow, where Q is the velocity potential, the gradient of Q is 
the fluid velocity and therefore must be determined accurately. If the difference 
approximation for Q, is not consistent with that for Vl based on geometric quan- 
tities at the primary grid points, the calculation of VQ from Eq. (17) will result in 
errors in a uniform flow. Similarly, for unsteady potential flow with moving grids, 
the time differencing of Q, and rr must be consistent in order to avoid further errors 
from the use of Eq. (19). For the Navier-Stokes equations, an inaccuracy of a dif- 
ferent kind is possible. If a central difference approximation for VQ from Eq. (17) 
is used to calculate the transport terms in the numerical fluxes of Eq. (54), the 
derivative (ES), at the grid point i, i, k will depend on the position vectors r at the 
points i + 2, j, k and i- 2, j, k. This lack of compactness puts more stringent 
requirements on the smoothness of the grid in order to achieve a desired accuracy. 

3. The treatment of boundary points can also be a source of inaccuracies. The 
evaluation of geometric quantities by one-sided differences is inconsistent with the 
central difference approximation used at the neighboring interior point, resulting in 
a possible loss of accuracy. If a grid singularity occurs on the boundary, the 
ordinary difference procedure can give a large error. The boundary procedure used 
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for any face with straight line edges. For a tetrahedral cell with vertices ri, r2, r3, 
and r4, defined by plane faces and straight edges, the volume is given by 

v1234 = i(r2 - rl 1 x (f3 - rl). (r, - rl) = f. S123 . (r4 - fl). (59) 

The above formulas can be used to make geometric calculations for an arbitrary 
cell with straight line edges. Each polygonal face can be subdivided into plane 
triangular facets and the total volume treated as a sum of tetrahedra. The resulting 
surface area vectors and their moments for each face are unique, but the total 
volume will depend on the method of subdivision. Calculations for a regular 
hexahedral cell are presented below. 

A hexahedron defined by eight vertices is shown in Fig. 1, with edges 14, 12, and 
15 directed in the positive 5, q, and [ directions, respectively. The surface area 
vectors in the positive [ direction are S,,,, and SQ,~, as indicated. The expression 
for the former can be written with the aid of Eq. (55) as 

S1562=l(r6-r,)x(r5-r2) (ma) 
= (r56 - r12) x h5 - r26). (bob) 

The more efficient form (60a) is expressed as the vector product of the two 
diagonals, showing that each diagonal is perpendicular to the surface normal. The 
form (60b) is in terms of the two vectors joining opposite edge midpoints. Since 
these vectors intersect in the face center r1562, it follows that the four edge mid- 
points and the face center all lie in a plane midway between the planes containing 
the two diagonals. The moment of the area is obtained by dividing the face along 
one diagonal and can be written as 

M 1562 = rxndS=r,6,xS,6,+r,26xS,,,. (61) 

In order to ensure that the volumes of the hexahedrons sum to the total volume, 

1 t 4 

FIG. 1. Geometry of hexahedral cell. 
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the shape of each face must be precisely defined and consistently used by the two 
neighboring cells. A simple way to calculate the cell volume is to choose an 
arbitrary point inside the cell. The volume is just the sum of the volumes of six 
pyramids, each with one face as the base and the arbitrary point as the common 
apex. For each non-planar face there exists the location of an equivalent plane face 
which gives the same volume for the pyramid. In fact, there are an infinite number 
of face shapes corresponding to a given equivalent plane face. The volume of the 
pyramid is then one-third of the dot product of the surface area vector of the face 
and a vector from the apex to any point lying in the equivalent plane. 

The earliest expression for the volume of a hexahedron, based on an equivalent 
plane face containing a diagonal, was given by Rizzi [9]. Unfortunately the equiv- 
alent planes for a pair of opposite faces contain oppositely oriented diagonals, so 
that the volumes do not sum properly. Kordulla and Vinokur [lo] showed that of 
the eight consistent divisions of the faces by diagonals, four result in a very simple 
expression for the volume. If one vertex of a cell main diagonal is chosen as the 
common apex and the other vertex as the intersection of three equivalent plane 
faces, the six pyramids reduce to three pyramids sharing the main diagonal as a 
common edge. Using the second form of Eq. (59), one obtains the expression 

V 12345678 = f@ 1485+s1234+s1562)‘(r7-rl). (62) 

Three similar expressions can be derived based on the other three choices for main 
diagonal, each yielding a different value for the volume. 

An alternate expression for the volume is based on the equivalent plane face 
passing through the edge midpoints and face center. Formulas using face centers to 
calculate the volumes of the six pyramids were proposed by Jameson [ 111 and 
Holmes and Tong [12]. It was shown by Davies and Salmond [13] that the same 
equivalent plane corresponds to a face defined as a doubly ruled surface. Edge mid- 
points were used to obtain more efficient expressions for the cell volume, but full 
efficiency was not obtained since a cell vertex was chosen as the common apex. If 
the edge midpoint r12 is chosen as the common apex and r67 and r4* are each at the 
intersection of two equivalent plane faces, one obtains the more efficient expression. 

V 12345678 = f[@5678 + s2376). k67 - r12) + (%493 + s4873) . (r48 - r12)]. (63) 

It can be shown that the volume given by Eq. (63) is the average of the volumes 
determined by the eight consistent divisions of the cell faces by diagonals. 

For completeness we give the geometric expressions for 2-dimensional and 
axisymmetric flow. The volume element is now defined by the co-planar vertices r i, 
r2, r3, and r4, where k is the unit normal to the plane. For 2-dimensional flow the 
surface area vectors take the form 

S12=(r2--r1)xk s23 = (r2 - r3) x k (64) 



18 MARCEL VINOKUR 

while the area moments become 

Mu = I rxndS=f(r,.r,-r,.r,)k, 
12 

(65) 

%= j rxndS=~(r,~r,-r,.r,)k. 
23 

The volume is given by 

Vlz3, = -h -rl) x b-2 -r4) .k. (66) 

For axisymmetric flow, let y be the distance from the axis of symmetry. The 
surface area vectors (per unit circumferential angle) are 

f42=~12(r2-rl)xk S2, = y2,(r2 - r3) x k (67) 

while the lateral surface area vector becomes 

(68) 

The volume (per unit circumferential angle) can be obtained from 

V,,,,=tCy,,,(r,-r,)~(r~-r,)+y,,,(r,-r,)x(r,-r,)l.k. (69) 

Finite- Volume Discretization 

Finite-volume methods are based on the discretization of Eq. (1 ), with the surface 
integral replaced by the sum of integrals over the faces of the cell. The method is 
normally applied to cells defined by the primary grid, so that certain cell faces will 
coincide with the flow region boundary. One can also apply the method to 
secondary cells, in which case the boundary cells are not full cells. The discussion 
is limited to ordered grids, but much of it can be extended to general grids. A full 
set of integer subscripts refers to a cell, or the center or centroid of a cell. Fractional 
subscripts then indicate cell faces, edges, or vertices. Thus the cell is defined by 
specifying the vertices (e.g., ri+ 1/2,j+ 1,2,k+ 1,2 ), and these are used to calculate sur- 
face area vectors (e.g., S f+ 1,2, j,k), area moments, and the cell volume Vi,,, using the 
formulas derived above. This ensures that all the geometric identities and con- 
straints are precisely satisfied. If F is spatially uniform (which is valid for a uniform 
free stream), the numerical calculation of the surface integral for each face should 
sum to zero (within roundoff errors). This is a necessary condition for the preserva- 
tion of a free stream. Temporal discretization is given by the superscripts n and 
n + 1, which refer to times t, and t2, respectively. 

The primary variable Q is normally associated with the cell or cell center. In 
some algorithms, such as that of Tong [14], it is defined at cell vertices. While 
these schemes offer better accuracy for grids that are not smooth, their practical 
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implementation is limited to steady-state flows governed by the Euler equations. In 
other algorithms for these flows [ 15, 163, Q is the average value on a cell face. Only 
the first case is treated here. We first consider a flow governed by the full set of 
conservation laws, for which U is a function of Q. All spatial integrals are replaced 
by the product of the spatial quantity and the average value of the integrand. Thus 
the geometry of the discretization is treated separately from the treatment of the 
physical variables. There is a certain ambiguity in the interpretation of Ui,j,k in the 
relation 

s VV.k 
U dV= Ui,j,k Vi,j,k. (70) 

Strict equality implies that Ui,j,k is the average value of U in the cell. But in order 
to calculate a surface flux it is convenient to think of Ui,j,k as the value of U at 
some average point in the cell, with the = sign replaced by the w sign. This inter- 
pretation of Ui,j,k is also implied when one uses the equation of state to express the 
pressure in terms of the conservative variables. A characteristic of the finite-volume 
method is that the precise location of this average point is not required during the 
calculation. Only in the output of the solution is a location of this point desired. 
Some investigators have suggested the cell centroid for this point. This is strictly 
valid only if all the components of U vary linearly throughout the cell. Since the 
distribution of U is not known, the centroid has no particular advantage over the 
cell center, defined as the vectorial average of the cell vertices. The latter point is 
easier to calculate and is therefore preferable. Of course, when the finite-volume 
method is applied to a secondary cell, the primary grid point is available as the 
average point for the cell. 

The major problem in a finite-volume method is the calculation of the time 
integral of the average flux over each face. The time integral can be 
approximated as 

where 

(71) 

(72) 

and At = t2 - t,. For implicit time integration (0 # 0), Fy:,‘,2, j,k is not known and 
is therefore linearized about time level n. On the other hand, for a cell face that 
varies with time, (Sf, 1,2, j,k)n+ ’ is known and need not be linearized. This is one 
distinction between the finite-difference and finite-volume approach which is 
discussed further in the next section. The calculation of the average flux is now 
presented for each of the class of equations, with comparisons between the tinite- 
difference and finite-volume methods made in each case. 
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Euler Equations 

For the Euler equations, one only needs the inviscid part of the average flux. The 
numerical procedures for this case can be divided into three classes. In the first class 
Fi+ l/2, j.k depends only on Ui,j,k and Ui+I,j,k, but requires an additional artificial 
smoothing flux to stabilize the calculation. This class includes multi-step algorithms 
in which Fi+ 112,j,k is alternately Fi,j,k and Fi+ ,,j,k, where 

Fi,j,/c E F(Ui,j,k), (73) 

and single step centered approximations of the form 

Fi+ 1/2,j,k = f(Fi,j,k + Fi+ I,,,kh 

Another form for the centered approximation is 

(74) 

(75) 

where 

ui+ tj2,j.k =ttUi,j,k+ Ui+l,j,k). (76) 

Form (75) is probably more consistent with the spirit of a finite-volume formula- 
tion. As discussed in [12], it gives better results near solid wall boundaries. It has 
the disadvantage of requiring three times as many flux evaluations in three dimen- 
sions as does (74). As an alternative, a form based on Eq. (2) has been suggested 
[ 12, 173. (We are treating the case v = 0 for now.) It can be written as 

(77) 

where 

“i+l/Z,j,k= ~(“i,j,k+“i+I,j,kb (78) 

This produces the favorable behavior of form (75) with less computing effort. 
The approximations to the flux integrals for the two faces in the < direction based 

on Eq. (74) take the form 

$CSF+ l/2, j,k ’ (Fi,j,k + Fi+ I, j,k ImSf-~/2,j,k .(Fi-1,j.k +Fi,j,k)I. (79) 

The analogous finite-difference expression is 

f[Sf+I,j,k.Fi+I,j,k-Sr-I,j,k.Fi--,j,k]. 630) 

Note that Eq. (80) is simpler than Eq. (79), since it contains fewer terms. Yet the 
conservation that it implies is carried out over a wider region. Specifically, the 
numerical telescoping property is valid over a distance of two cell widths in each 
direction. Thus conservation in a finite-difference discretization is effectively carried 
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out over eight sets of overlapping cells with double the size in each direction of the 
original cells. This could lead to larger errors for grids that are not smooth, and 
near flow region boundaries. 

Another source of error in the standard finite-difference discretization for three 
dimensions is the central difference approximation to the surface area vector such 
as Sf+ 1, j.k* This will result in oscillations for a uniform flow since Eq. (6) is not 
satislied for the doubly sized cell. This was discussed in [3, 183. An appropriate 
difference formula, equivalent to the application of Eq. (60b) to the larger cell, was 
presented in [18]. A more efficient formula was given in [3]. Actually, the most 
efficient form is derived from Eq. (60a) as 

Sf+ 1, j,k = ~(ri+I,j+l,k+l-ri+l,j-l,k-i )X(ri+~,j- l,k+ 1 -ri+l,j+l,k--1). (81) 

This takes no more operations than the central difference formula and eliminates 
errors for a uniform flow. For problems in which the free stream is a uniform Row, 
an alternate procedure suggested in [18] is to subtract the free-stream fluxes from 
the conservation equations. This will guarantee exact cancellation of free-stream 
errors resulting from the central difference approximation to Sf, i, j,k. 

To circumvent the need for artificial smoothing fluxes with the first class of 
approximations, upwind-biased approximations that model the waves crossing 
the face are required. For the face with surface area vector Sf+ i/2,& = 
Sf+ 1/2,j,knft 1/2,j,k? we introduce the notation F5 = nf+ ,/2, j,k. F for the normal flux 
component. In order to achieve higher than first-order spatial accuracy, an upwind- 
biased numerical flux Ff, r/2, j,k depends on states other than Ui,j,k and Ui, i,j,k. 
There are two ways this is generally accomplished. Probably closer to the finite- 
volume philosophy is the class of approximations associated with the name 
MUSCL, in which the final calculation is only in terms of quantities defined at the 
face. If U,< l/2, j,k and UT+ l/2, j, k are conservative variables just on the negative and 
positive sides of the face, then the numerical flux is given by an expression of the 
form 

For first-order accuracy, U,< 112, j,k = U, j,k. For higher order spatial accuracy, if 
dimensional splitting is employed, U,:+ ,,2, ,k is obtained from upwind-biased inter- 
polation of ui- , ,Xk ,  Ui,j,k, and possibly Ui+I,j,k, where the coefficients may be 
modified using appropriate limiters to prevent numerical oscillations. Analogous 
formulas give vi+, l/2, j,k. Examples of a higher order calculation without dimen- 
sional splitting for two dimensions may be found in [19, 201. 

One form of (82) that represents the physics of the wave processes is the 
l-dimensional Riemann solver for the two constant states U,; l/2, j,k and Vi+, l12,j,k. 

This gives a UniqUe VdUe for Ui+ 1/2, j,k at the face and the resultant numerical flux 

Ff,1/2,j,k=FS(Ui+1/2,j,k). (83) 
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Since an exact Riemann solver is iterative, and computationally expensive, 
approximate Riemann solvers have been devised, such as those of Godunov [21], 
Osher and Solomon [22], Collela [23], Montagne [24], Pandolfi [25], and 
Dukowics [26]. 

An algebraic approach to obtain (82) is that of flux-vector splitting. For the 
Steger-Warming and Van Leer splittings, which are given in the previous section, 
the solution is 

FF+ 112, j,k =J;'+(Ui+l/2,j,k)+F5~(Ui++1/2,j,k). (84) 

Calculations using both these splittings for an implicit factored algorithm are 
presented in [27]. Similar calculations using the splitting of Eq. (45) are found in 
[6] for an implicit algorithm, and in [28, 291 for a two-step explicit algorithm. 
Implicit finite-difference calculations using the Steger-Warming splitting are carried 
out in [30]. Here free-stream fluxes are again subtracted in order to eliminate 
errors in a uniform flow. 

A third appraoch is based on a local linearization due to Huang [31] and Roe 
[5]. In terms of the operator Aj+ i/2,j,k = A( ui+ i/2,j,k) for some average ui+ i/Z,j,k, 
the solution can be written in the form 

- IAi+l/2,j,kl (UA1/2,j,k- UG1/2,j,k)l. (85) 

The last term can be interpreted as a dissipative correction to a centered 
approximation, with A i + i/2, j,k acting as a numerical viscosity operator. Since (85) 
violates an entropy inequality, the actual form that is used is modified in some 
manner in order to prohibit non-physical solutions. Theoretically, the optimum 
choice for Ui + i/2, j,k is the Roe average of U,> 1,2,j,k and U,; 1,2,j,k, given in the 
previous section, but eqaully satisfactory results are usually obtained if the simpler 
arithmetic average is used. The results of the other two approaches can also be 
written in a form analogous to (85). For example, Eq. (84) for Steger-Warming flux 
splitting can be written as (85), with the dissipation term replaced by 

IA(u,‘, 1/2,j,k)l UA 1/2,j,k - IA(UG 1/2,J,k)l U, I/Z,J,k. 636) 

The other class of higher order upwind-biased approximations to the numerical 
flux at a cell face involves the consideration of the wave processes at neighboring 
faces. This can be done using any of the three approaches described above to repre- 
sent the wave processes. There is some question as to how the geometry of the 
neighboring face should enter the calculation. From a strict finite-volume view- 
point, all calculations relating to the determination of Ff, i,*, j,k should only involve 

5 ni+ i,*, j,k, even at neighboring faces. This is computationally expensive and does not 
take into account the grid curvature. It is therefore more appropriate to use the 
local face normal in calculations involving parameters defined at neighboring faces. 
The local geometric scale of the neighboring face can also be involved. To illustrate 



FINITE-DIFFERENCE AND FINITE-VOLUME 23 

this we consider the application of the local linearization approach. In the scheme 
of [32], one requires flux differences across neighboring faces, modified by 
appropriate limiters. The relevant parameters defined for face i + i, j, k are the 
components of 

Si+ 1/*,j,kR,~‘1/2,j,kCFS(Ui+ I.j,k) - f”( Ui,j,k)l. (87) 

In the modified flux approach of Harten [33,34], as implemented for curvilinear 
coordinates in [35], the relevant parameters are the components of 

v/i+1/2,j,kR*~‘l/2,j,k(Ui+l,j,k- Ui,j,k), (88) 

where Vi + 112, j, k is some average of the volumes of the two adjoining cells. The two 
different geometric scales arise naturally from the extension of a Cartesian analysis 
to curvilinear coordinates using Eq. (20). In the finite-volume upwind scheme of 
Coakley [36], the parameters are those of Eq. (88) without the geometric scale (i.e., 
‘i+ 1/2,j,k= 1.) Further numerical experiments should be conducted to determine 
which geometric scale (or none at all) gives the best results. 

Navier-Stokes Equations 
The calculation of transport terms in the average flux for the Navier-Stokes 

equations necessitates the evaluation of VQ. This can be done using the nonconser- 
vative expression (17), or basing it on the conservative definition 

j VQdV=$s nQdS. (89) Y 

The second form leads to a more complex expression, but is more consistent with 
the finite-volume philosophy. It also has some computational advantages, which 
will be indicated presently. Applying Eq. (89) to an auxiliary cell centered at 
i + i, j, k, one obtains 

The geometric terms in Eq. (90) can be obtained in two ways. The vertices of the 
auxiliary cell can be defined as vectorial averages of the vertices of the original cells, 
and the exact expressions for areas and volumes can then be applied to them. Since 
true conservation for the auxiliary cells is not required, the averages of the areas 
and volumes of the original cells can be used directly to define the corresponding 
quantities for the auxiliary cell. The second method is more efficient, particularly for 
three dimensions. 
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The values of Q in the first two terms, corresponding to the longitudinal compo- 
nent of the gradient, are already given. The remaining values, which contribute to 
the transverse components, must be determined by suitable averages. For example, 
one can define Qj+ I,z,j+ 1,2,k as 

Qi+ 1/2,j+ 1/2./c = :(Qj,j+ l,k + Qi+ l,j+ 1.k + Qi,,,k + Qi+ l,,,k). (91) 

The sum of the contributions of the last four terms in Eq. (90) using Eq. (91) for 
Cartesian coordinates does not involve QjIj+ or Qi+ ,,j,k. If relaxation methods are 
used to advance the solution in time imphcitly, these terms will affect the diagonal 
dominance of the iteration matrix only weakly due to the nonuniformity of the grid. 
On the other hand, if Qi+ 1,2,j+ ,,2,k is defined as 

Qi+ 1/2,j+ 1/2,k = !! ( Qi,j+ 1,k + Qi+ 1,j.k) WW 

Qi+ 1/2,j+ 1/2,k = !dQi+ l,j+ I,k + Qi,j,kL Wb) 

the last four terms in Eq. (90) can be combined to improve the diagonal dominance. 
This was pointed out in [37], where criteria are given on the use of Eq. (92a) or 
(92b). 

The nonconservative form of (VQ),, i/2, j,k based on Eq. (17) is usually applied in 
the thin-layer approximation, with the transverse components neglected. Using 
Eq. (18), it can be written as 

(VQ)i+ 112,j.k x Sf+ 1/2,j,k(Qi+ 1, j,k - Qi,j,k)IVi+ 1/2,j,k, (93) 

with a simple average defining Vi+ 1/Z, j,k. If the transverse terms are required, they 
can be written in several different ways, using expressions such as 

(94) 

with a simple average now defining szj,k. Note that the transverse terms do not 
affect the diagonal dominance in the nonconservative form. All the above relations 
for the gradient can be used for the transpose by reversing the order of the terms 
in all products. The divergence is obtained by employing a dot product for all the 
products. 

The nonconservative form of a transport term can be related to the analogous 
finite-difference expression. Consider a flux of the form a VQ, where a is a scalar 
function of Q. For the longitudinal component of the flux integral over face 
i + f, j, k, the finite-volume expression is 

(a/v)i+ 1/2,j,kSf+ l/Z,j,k -SF+ l/z,j,/c(Qi+ I,j,k - Qi,j,kh (95) 
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where (dv)i+ 1/2,j,k is defined by a simple average. The analogous finite-difference 
expression is 

~(ai,j,kS~j,k’S~j,klVi,j,k+ai+,,j,kS~+l,j,k’Sf+I,j,k/Vi+l,j,k))(Qi+l,j,k-Qi,j,k). 

(96) 

It is interesting to compare these two equations (and the corresponding ones for 
face i - l/2, j, k) with Eqs. (79) and (80) that relate the inviscid flux integrals. We 
first note that the finite-volume expression (95) is now a little simpler. A more 
significant factor is the presence of the volumes in the flux integrals required to 
calculate the gradients. If a central difference approximation is used to determine 
the volumes using Eq. (15), the contributions of the finite-difference flux integrals 
for cell i, i, k involve the position vectors ri+2, j,k and rj-2, j,k. Thus the dependence 
on the grid geometry due to the transport terms is less compact. This could lead 
to additional errors for grids that are not smooth and near flow region boundaries. 
One also notes that the numerical telescoping of the finite-difference transport flux 
terms is with adjacent cells. It is thus inconsistent with the telescoping of the 
inviscid terms. Since the transport terms give no contribution for a uniform flow, 
they play no role in satisfying Eq. (6). One can thus use Eq. (81) to calculate surface 
area vectors appearing in Eq. (96). Similar conclusions can be obtained for other 
forms of the flux representing transport terms. The transverse component of the flux 
integral has the same behavior as the inviscid flux integral and has the same 
telescoping property. It does exhibit the lack of compactness of the longitudinal 
component due to the presence of the volumes. 

Potential Flow 

Another important case where gradients must be calculated is potential flow. For 
an irrotational flow the velocity is given by 

u=v(b, (97) 

where 4 is the velocity potential. If one further assumes the flow is isentropic, the 
momentum equation has the general Bernoulli integral 

h=C(z)-4,-:V#-Vql+Vd.r,. (98) 

Here h = E +p/p is the specific enthalpy and C(r) is an arbitrary function of r. In 
most problems C is a constant. An arbitrary coordinate transformation has been 
included. The integral is valid for an arbitrary equation of state. For the given 
entropy, the density is some known function 

P =f(h). (99) 

For the special case of a perfect gas f(h) is simply a power of h. Since the state of 
the fluid is completely determined in terms of 4 by Eqs. (97), (98), and (99), 4 
serves as the single primary variable Q that defines the flow. The conservation of 
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mass, which has not been used so far, then serves as the single conservation law 
that determines 4. We thus have U = p, P = 0 in Eqs. (1) or (13), with G = 0 in 
Eq. (2). Both F and U are now functions of V4. 

There is a fundamental difference in the use of the potential as a primary 
variable, since only its gradient has physical significance. This can be seen by 
considering a very simple solution of the potential equation, namely uniform flow 
with velocity II,. The corresponding potential solution is 

q+=um .r. (10) 

One cannot specify such a flow numerically without defining precisely the locations 
of the position vectors r at which the potential 4 is discretized. While this is an 
obvious statement from a finite-difference viewpoint, in the finite-volume methods 
considered up to now the variables associated with a cell were not precisely 
localized. There is an important consequence in the way gradients are calculated. 
Applying Eq. (17) to Eq. (100) one obtains 

vcp=u, . (Vtr, + Vqr, + V<r,). (101) 

The terms inside the parentheses represent the identity tensor analytically. Numeri- 
cally, terms such as r5 are approximated the way dr is treated, while the gradients 
of the coordinates are obtained from Eqs. (14), (15), and (18) by approximating rs, 
etc. in some manner. In order to obtain the identity tensor numerically and produce 
the uniform velocity, the two difference approximations must be the same. This 
result was first obtained in [38]. It also follows from Eq. (98) that for a moving 
grid rr must be differenced the same way that 4, is treated. In some algorithms, the 
velocity and density may be calculated at diferent points, therefore employing 
different difference approximations for the derivatives of 4. The corresponding 
derivatives of r used to calculate the gradients of the coordinates must therefore 
also be different. 

From the above discussion it follows that for a finite-volume method, in order to 
preserve a uniform Row, 4 must be defined at precise locations and the same 
approximations must be used for the derivatives of 4 and the corresponding r in 
calculating V& In this respect the finite-volume method for potential flow has some 
of the trappings of a finite-difference method. A clear distinction can still be made 
in the way the cell geometry is handled. If the potentials are defined at cell centers, 
the cell vertices must be defined and used to calculate areas and volumes in a linite- 
volume method. In a linite-difference method, the position vectors at the cell centers 
are differenced in the same manner to calculate both the gradients and the 
geometric quantities appearing in Eq. (20). 

For steady-state algorithms, the areas of the cell faces are the only relevant 
geometric quantities. Two such algorithms are the finite-volume method of Jameson 
and Caughey [39,40] and the implicit algorithm of Hoist [41], as extended by 
Flores et al. [38], and Thomas and Hoist [42,43]. The second algorithm is the 
basis of the 2-dimensional code TAIR and the 3-dimensional code TWING, both 
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considered finite-difference codes. But according to the definitions given above, the 
finite-volume and finite-difference labels should actually be reoersed. 

In both methods the conservation law is applied to secondary cells whose vertices 
are obtained as vectorial averages of the primary grid points at which 4 is defined. 
In the method of Jameson and Caughey, all derivatives such as #i, and rc are 
obtained at the secondary grid points by centered box differencing and are then 
used to calculate fluxes such as P’ at these points. A numerical flux such as 
Ef+ 112, j,k in Eq. (54) is then obtained as the average of the values of pr at those 
secondary grid points that are the vertices of the i + 4, j, k face. These fluxes are 
further modified by adding recoupling terms to undo the effects of odd-even 
decoupling and explicit artificial viscosity terms to stabilize the calculation in super- 
sonic regions. The above procedure constitutes a finite-difference method according 
to our definition. As is the case for the Euler equations, the area condition (6) is 
satisfied for 2-dimensional flow but is violated for 3-dimensional flow. In the latter 
case the box differencing applied to T is equivalent to a secondary grid with 
piecewise straight connections, and each face is the sum of four piecewise facets. 
The averaging of the fluxes at the four vertices does not correctly sum the areas of 
the four facets for a uniform flow. As discussed in [40], numerical errors for a 
uniform free stream in three dimensions are removed by subtracting free-stream 
fluxes from the basic equation. 

In the TWING code derivatives of 4 and r are obtained at the centers of the 
secondary faces i + t, j, k, etc. by centered differences of known values at the 
primary grid points. These are then used to calculate u and p at the face centers. 
The surface area vectors are calculated from Eq. (60b) in terms of the known 
positions of the vertices. The secondary grid is therefore assumed to have straight 
line connections. The flux integral is then calculated from Eq. (72). Stabilization in 
supersonic regions is accomplished by upwinding the density. In order to minimize 
storage, p is only calculated on t coordinate faces, where the 5 coordinate is chosen 
to be approximately aligned with expected shock surfaces. Its value at other faces 
is obtained by centered averages. The procedures constitutes a finite-volume 
method applied to secondary cells. Note that in two dimensions, the expression for 
the surface area vector as calculated from Eq. (64) in terms of the vertices is 
identical to the corresponding derivative of r at the face center by centered 
differences. In this case the distinction between the two labels disappears. This is 
due to the fact that for steady-state potential flow the flux is only a function of V#, 
and compact differencing is obtained by calculating the fluxes directly on the cell 
faces. 

The above discussion makes it clear that away from boundaries there is a 
blurring of distinction between finite-difference and finite-volume methods for 
steady-state potential flow. In a finite-difference method, an auxiliary finite volume 
grid can be constructed, and the relevant geometric terms can be calculated from 
it in order to eliminate those sources of error. Conversely, in a finite-volume 
method it may be necessary to construct an auxiliary finite-difference grid in order 
to calculate gradients properly. 
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MOVING GRIDS 

For an unsteady flow, a grid motion can in general influence the solution of con- 
servation laws in three different ways. It affects the convective part of the flux due 
to the presence of the grid velocity in Eq. (2). This is particularly true for upwind- 
biased approximations. The surface area vector over which the flux is acting will in 
general change in both magnitude and direction. Finally, if the grid motion is not 
rigid, the volume of the element will undergo change. In potential flow, there is also 
an additional dependence of p on the grid velocity, as shown by Eqs. (98) and (99). 
In the previous section we saw that in a finite-volume method the grid points are 
treated in a different manner to calculate geometric quantities than the way they are 
used to calculate gradients. Similarly, the temporal treatment of the grid points will 
be different in calculating the change in geometric quantities than in the calculation 
of grid velocities in Eqs. (2) and (98). 

Grid motion relative to a fixed reference frame has been previously studied by 
Thomas and Lombard [3]. The effect of a non-inertial reference frame has been 
treated by Holmes and Tong [ 123 for constant rotation and an explicit integration 
scheme. A generalization and unification of these results is presented here. If a 
rotating non-inertial reference frame is utilized, one has the choice of performing 
calculations with the fluid velocity components defined with respect to the inertial 
or non-inertial frame. In the latter instance it is generally assumed that external 
source terms must be present due to the rotation of the non-inertial frame. We 
discuss both situations and demonstrate that one can perform the numerical 
integration without source terms, thus preserving the strong conservation-law form. 
For concreteness, the discretization of general two-level implicit schemes will be 
presented. 

In the finite-volume method, the grid velocity is treated as a geometric quantity 
and is interpreted as the rate of displacement of a cell face. In the standard finite- 
difference method, the grid velocity is normally treated as a flow variable and is 
combined with the fluid velocity to define a transformed velocity. This gives rise to 
unavoidable errors in a uniform free stream. Therefore it is necessary to treat the 
grid velocity in a finite-volume manner to achieve a proper finite-difference method. 
For this reason, the finite-volume formulation will be given in some detail, and the 
relevant changes for the finite-difference formulation will be indicated. Note that the 
procedures developed in this section are also applicable to space-marching 
algorithms in which the grid changes in the marching direction. 

Formulation of General Grid Motion 

Let r*(t) be the position vector of a point relative to a non-inertial reference 
frame. Then the corresponding vector relative to an inertial frame has the general 
form 

r(t)=rO(t)+C(t)-r*(t), 
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where C is an orthogonal rotation tensor satisfying 

C-CT=I. 

The absolute velocity v of the point is given by Eq. (3) as the sum of 

(103) 

and 
(104) 

v,=c -i*. (105) 

Here i indicates differentiation of x with respect to time for any quantity x. The 
velocity v, may be due to the motion of a prescribed boundary surface or the use 
of a flow-adaptive grid. The latter may result from the motion of a free surface or 
the changes in some flow gradients. In the most general situation it could depend 
on all three. 

According to the finite-volume philosophy, the geometric effects due to the grid 
motion are treated separately from the changes in the physical variables. Thus for 
a cell face with surface area vector S(t) we define 

6Vsj-** j n-vdSdt 
11 S(f) (106) 

to be the volume swept out by the face during the time interval At. 6V, and SV, 
are similarly defined in terms of v, and v,. Only the sum of the SV, for all the cell 
faces contribute to the change in cell volume, The time-averaged surface area vector 
for the cell face is defined as 

n dS dt, (107) 

and the time-averaged normal component of the velocity of the cell face is then 

C,=GV/(SAt). (108) 

It will be convenient to express certain absolute directed vector quantities in the 
non-inertial frame. We thus define 

“*=cT.” 9 v*=p.v 9 n*=CT.n. (109) 
Note that u* and v* are not velocity vectors relative to the non-inertial frame. Let 

B*=CT.t (110) 

be the antisymmetric angular velocity tensor whose components form the corres- 
ponding angular velocity vector rR*, where 

B*.r*=Q*xr*. (111) 
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If we further let 

v,*=CT.i 
07 

then Eq. (104) can be rewritten in the non-inertial frame as 

v*=v,*+n*xr*. i- 

(112) 

(113) 

Discretization with Velocity Expressed in Inertial Frame 

Assume that the fluid state is given at time n. In general, the position vectors r* 
of the grid points, as well as the quantities r0 and C defining the orientation of a 
non-inertial reference frame, will be assumed known at times n and n + 1. Thus the 
grid is assumed to be updated explicitly, even if the flow variables are updated 
implicitly. Unless stated otherwise, we adopt the notation 

AX=X”+‘-X” (114) 

and 
X=+(Xn+Xn+l) (115) 

for any quantity x. The spatial indices i, j, k are omitted for brevity in this section. 
In applying the finite volume method to Eq. (l), the difference in volume 

integrals on the left-hand side can be written as 

A(W)= V”+‘AU+U”AV. (116) 

In evaluating the time integral of the average flux over a face, all geometrically 
defined quantities are assumed held constant at their time-averaged values. The flux 
term can then be approximated as 

[(l-e) F;+BF;+‘] SAt, (117) 

where the quantities ir and V, defined by Eqs. (107) and (108) are used in evaluating 
F, = n . F at both time levels,. These same quantities are also used in evaluating the 
flux Jacobian A matrix when time linearization is used. 

It is simpler to calculate the geometric quantities in the non-inertial reference 
frame. From the known position vectors of the cell vertices, the surface area vectors 
S*, area moments M*, and cell volumes V can be obtained from Eqs. (60) through 
(63) at times n and n + 1, and their time-averaged values calculated from Eq. ( 115). 
(P is required if a production term is present in Eq. (l).) The conservation of 
volume condition (9) can be satisfied by calculating SV, for each face exactly from 
the known positions of the four vertices at times n and n + 1. A simpler method is 
to obtain an approximate displacement 6r* as the average of the Ar* of the four 
vertices, and calculating SV, from 

6V,zS* .6r*. (118) 
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One must then use the sum of the 6V, of the six faces (with appropriate signs) in 
place of the true AV in Eq. (116). The simpler method should normally suflice, 
although second-order accurate algorithms with very large grid distortions may 
require the exact procedure. 

If the grid is given in a non-inertial reference frame, one obtains 6 V, for each face 
from 

i?V,=(V,*~~*+~*~i%l*)At. (119) 

Since the S* and R* satisfy Eqs. (6) and (8) when summed over all the faces, the 
Sk’, will sum to zero, as required by rigid body rotation. The angular velocity a* 
is obtained from the components of B* calculated as 

B*=; CT.AC. (120) 

One can readily show that Eq. (120) results in an antisymmetric tensor. The trans- 
lational velocity V$ is similarly calculated as 

l- v,*=--C’.Ar 
At 0. (121) 

The surface area vector s in the inertial frame can be calculated from 

~=~[cyS*)“+c”+‘.(S*)“+‘] (122) 

or 

s=c.s*. (123) 

The second expression is simpler and differs from the first by an error of order 
(At)‘. Note that for both expression S will differ from S* by that same order of 
error. 

The final step is the calculation of 0, from Eq. (108), where 

6V=6V,.+6Vr. (124) 

Any finite-volume algorithm discussed in the previous section can now be 
applied, with the grid motion included in the calculation of the flux. The change in 
cell volume due to grid distortion manifests itself as an additional explicit term, as 
shown by Eq. (116). 

In a finite-difference method, the positions of the cell centers are known at times 
n and n + 1. Since the grid motion just affects the convection part of the flux, it is 
sufficient to examine the inviscid flux terms only. For central-difference approxima- 
tions, the integration of Eq. (20) over a time interval results in expressions such as 
Eq. (80). The evaluation of geometric quantities at each grid point is done in a 
manner analogous to that in the finite volume method, taking into account that 

581/81/l-3 



32 MARCEL VINOKUR 

conservation is effectively applied to a doubly sized cell. Condition (21) is satisfied 
by calculating the surface area vectors from Eq. (81) in terms of the positions of the 
vertices of the doubly sized face passing through the grid point. The area moment 
can be analogously evaluated by applying Eq. (61) to those vertices. 

Since the central-difference approximations for the effective cell volumes do not 
define a precise volume, one must obtain an approximate 6 V, from Eq. (118), with 
6r* replaced simply by dr* at that grid point. (It is possible to calculate a volume 
for the doubly sized cell that is consistent with the area formula (81), using either 
Eq. (62) or (63). With this additional complexity, any advantages of the linite- 
difference discretization are lost, and it is better to go directly to the more compact 
finite-volume discretization.) The summation of the SV, for the six faces of the 
doubly sized cell (with appropriate signs) to obtain the appropriate AV to use in 
Eq. (116) is equivalent to solving Eq. (22) by central differences. The importance of 
using Eq. (22) was first pointed out in [3]. The effects due to a non-inertial 
reference frame are handled precisely as in the finite-volume case. 

Discretization with Velocity Expressed in Non-inertial Frame 

For many applications in which the grid is defined in a non-inertial reference 
frame, it is more convenient to employ velocity components referred to axes fixed 
in that frame. The momentum conservation law for these components requires the 
presence of source terms. There is an analogy with the use of curvilinear coor- 
dinates, where the momentum equations for the curvilinear velocity components 
introduce source terms. But these terms can be eliminated by writing the equations 
for the Cartesian velocity components instead. Similarly, by employing components 
of the absolute velocity (as expressed in the non-inertial frame), one can also 
eliminate the source terms. 

Let the column vectors U* and F,*, and the matrix A* be defined in terms of u*, 
v*, and n* given by Eq. (109). Using the rotation matrices 

(125) 

one can write the transformations 

u= cu*, F,, = CF,*, A = CA*C’. (126) 

In order to reproduce a uniform flow in the inertial frame using an implicit scheme, 
one must use an incremented quantity proportional to AU, where 

AU=C”+’ AU* + ACU*“. (127) 

This suggests defining 
A~*z(C-‘)~+‘AU (128) 
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and 

0 0 0 
8*2& (C-l)“+’ AC= 0 B* 0 ) 

[ I 0 0 0 

where 

B* =$ (C=)n+’ .AC. 

(129) 

(130) 

Note that 8* differs from B* by a term of order (At) and is therefore not anti- 
symmetric. Equation (127) can now be rewritten as 

AU*=A~*-~*U*“At. (131) 

The second term is only present in the momentum equation, where it represents a 
numerical Coriolis correction. 

Before writing the implicit equation for Au*, we define the tensor 

pE (c=)n+l . C”=I-8* At, 

and the corresponding matrix operator 

(132) 

Note that they differ from the identity tensor and unit matrix, respectively, by terms 
of order (At). Premultiplying Eq. (116) by (C- l)n ’ ‘, we obtain for the difference in 
volume integrals the expression 

V n+l Aa*+TU*” AV. (134) 

The corresponding flux integral can be written in the time linearized form as 

(rF,* + 8A*” Au*) s* At. (135) 

Equations (134) and (135) define an implicit algorithm to calculate Au*. This is 
then corrected by the Coriolis term using Eq. (131). The scheme is fully conser- 
vative and preserves a uniform free stream. Note that in order to achieve the strong 
conservation-law form it is necessary to use the dot product of the explicit term in 
the momentum equation with p and to use the proper numerical representation of 
the Coriolis term. 

The fluid velocity vector relative to the non-inertial frame is given by 

“*““*-v* (136) 
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In order to calculate it one requires v* at cell centers at times n and n + 1. The posi- 
tions of the cell centers are given for a finite-difference method. For the linite- 
volume method one must define the location of the cell center when the non-inertial 
frame underdoes rotation. This situation is similar to the one discussed previously 
for potential flow. In addition, in order to achieve second order accuracy in time, 
one must know rO, C, and r* for each grid point at three time levels. Thus, using 
Eq. (136), one can treat the relative motion in an arbitrary non-inertial reference 
frame in a completely conservative way. 

TREATMENT OF BOUNDARIES 

The treatment of flow region boundaries depends on whether conservation is 
applied to cells defined by the primary or secondary grid. These will be referred to 
as finite-volume and finite-difference grids, respectively, even though the linite- 
volume and finite-difference methods can be applied to grids of the other family. At 
open boundaries, and also for upwind-biased approximations, the proper treatment 
of boundaries is based on characteristics considerations. Due to the l-dimensional 
nature of this procedure, accurate treatment of solid wall boundaries normally 
employs methods that use the basic equations directly. These can be conveniently 
divided into two main classes. In the first class, the unknown variables on the wall 
are integrated together with those at interior points by an appropriate application 
of the conservation laws and boundary conditions. In the second class, the 
unknown boundary quantities needed to calculate flux terms at interior points are 
obtained using extrapolation, reflection principles, or some auxiliary equation. We 
will show how the conservation laws can also be utilized in this second approach. 
Both approaches will be discussed for finite-difference and finite-volume grids. Note 
that questions of stability and programming efficiency, although both very impor- 
tant, are beyond the scope of this paper. The type of grid also plays an important 
role at zonal boundaries and in the treatment of grid singularities. These topics are 
also treated in this section. Only stationary grids will be considered for simplicity. 

Wall Boundary Conditions for Finite-Difference Grid 

Let the wall be a constant c surface with index k = 1. Associated with the bound- 
ary point i, j, 1 is a secondary grid half-cell whose center is designated as the point 
i, j, 2, as shown in Fig. 2. Since the points ri,i,o do not exist, the finite difference 

. . . 
i-l. i, 2  i. I. 2 i + 1, j, 2  

r---- l  x !,j, 514 I 

i-l. i. 1  ///I -  i.i. 1  /////// -  i + 1,j.l /I/// 

FIG. 2. Boundary half-cell for finite-difference grid. 
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expressions for S5 and V previously derived for interior points are not valid at the 
points i, j, 1. These quantities are required to calculate transport terms for points 
i, j, 2 and i, j, 1, as well as the geometry of the boundary half-cells. The simplest 
way to modify the interior formulas is to replace ri,i,O by T~,~,~, and multiply the 
final result by 2. As an example, formula (81) becomes 

(137) 

The use of these first-order instead of second-order accurate one-sided expressions 
is actually preferable for two reasons. It prevents possible unphysical answers (e.g., 
negative volumes) for grids with spacing discontinuities. It is also necessary in order 
to satisfy Eq. (6) for the doubly sized half-cell associated with the boundary point. 
When calculating transport terms at point i, j, 1 using Eqs. (17) and (18), one 
should use 

(Q,)i,j,l= (Qi,j,2-Qi,j,,)/Ai (138) 

for consistency. Therefore the point i, j, 2 should be chosen close enough to the 
boundary to be in the linear range of the variation of Q when transport terms are 
important. 

Extending the work of Thomas [44], we apply Eqs. (20) and (54) to the half-cell 
centered at the point i, j, i. Second-order accurate spatial differencing yields 

where 

~i,j,5/4~(~“i,j,1+:ui,j,2) vi,j,19 

pf+ 1/2,j.5/4 ES;+ 1/2,j,l . (iFi+ 1/2,j.l + iFi+ 1/2,j,2), 
(140) 

etc. 

Note that a partial finite-volume approximation is employed. Thus we use Vi, j,, 
and SF+ 1/2,j, I (instead of their values at k = s), since these have already been defined 
so as to satisfy the geometric conditions. 

We can eliminate U, j,2 using the conervative difference approximation at point 
i, j, 2. Introducing 

BE vi,j,llvi j29 I . (141) 

we obtain for the second-order accurate conservative spatial differencing of Eq. (20) 
at point i, j, 1 the relation 

(~,)i,j,,+fC-BE:,,2+(8+B)P:,,,2-8~~,j,,l/A~ 
+ (F~+I/z,~,I -FF-l/~,j,l )/At + (Pzj+ l/2,1 -a!j-1/2,1 )/Art ~0, (142) 
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where 

‘f+ 1j2,J.I =‘$+ l/2,/.1 + !iCSC+ 1/2,J,1 -PSF+I/~,~,Z) ‘Fi+,/,,j,2, etc. (143) 

An important special case of Eq.(142) results from the impermeable solid wall 
condition 

(SC . m);, j, 1 = 0, (144) 

valid for all flows. By combining Eq. (144) with the dot product of Sf,,, and the 
second component of Eq. (142), one obtains a time-independent relation expressing 
the conservation of normal momentum at the boundary point. 

Consider first the solution of the Navier-Stokes equations for a perfect gas. The 
no-slip condition 

mi, j, I = 0 (145) 

also results in 

Pi,j,l =Ice,j,l. (146) 

If the wall temperature is prescribed and E, is the wall specific internal energy, then 
we also have the condition 

(147) 

Thus there is only one unknown variable on the wall. 
For the first class of methods, Thomas [44] suggests using the continuity 

equation, since the boundary conditions supplant the momentum and energy 
conservation laws. The first component Eq. (139) or (142) would thus be the 
missing equation to use in an implicit algorithm. Due to the presence of Ui,j,2 in 
Eq. (139), it is perhaps more appropriate to use Eq. (142), since the boundary 
conditions only specify the time derivatives of Ui, j, i . Actually, the wall temperature 
condition only relates e,, j, i to pi, j,l through Eq. (147), so that one could integrate 
the energy equation instead. Whichever equation is chosen, conservation for the 
remaining conservative variables will not be precisely satisfied for the boundary 
half-cell. Therefore some interior numerical flux terms will not be precisely 
cancelled, and conservation of some variables for the entire flow region will be 
violated in an integral sense. 

As pointed out by Mehta [45] any independent relation can be used to integrate 
Uj, j,, with time. The time-differenced form of the normal momentum equation 
obtained from the second component of Eq. (142) provides such a relation for the 
pressure. This can then be used instead of the energy equation, in view of Eq. (146). 
The use of the time derivative of a conservation law, as opposed to its direct 
employment when solving the continuity or energy equation, can have important 
implications in the implementation of a factored implicit algorithm. This is 
discussed further below. 
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For the second class of methods, the pressure is the only unknown wall quantity 
needed to calculate flux terms when applying the conservation laws at interior 
points i, j, 2. The time-independent conservative normal momentum equation at the 
point i, j, 1 provides a relationship between the wall pressures and quantities at 
interior points. In implicit algorithms both the direct and time-differenced forms of 
this relationship are required. In this respect the second method has aspects of both 
versions of the first method. 

The practical implementation of all of these approaches could require further 
approximations which decrease the spatial or temporal accuracy of the algorithm 
at the boundary and may involve a restriction to orthogonal grids. A factored, 
implicit, central-differenced implementation of Eq. (139) can only be first-order 
accurate in time due to the presence of U, j, *. Flux terms such as Fi + r,*, j, 2 must be 
treated explicitly, thus again reducing the temporal accuracy to first order. One can 
maintain second-order accuracy in time by letting Ui,j,z = U, j,, and Fi+ 1,2,j,2 = 
Fi+I/2,j,l, but then the spatial accuracy is reduced to first order. If one used 
Eq. (142) instead of (139), one must still treat some flux terms explicitly and suffer 
a loss in temporal accuracy. 

Another problem arises with the use of the time-differenced normal momentum 
equation for large wall curvature or severe non-orthogonality in the grid. Under 
those circumstances the pressure change at point i, j, 1 is coupled to the pressure 
changes at neighboring points on the boundary as well as the points i, j, 2 and 
i, j, 3. In an implicit updating of I!YJ~,~,, using this equation, all spatial difference 
operators operating on A U, j, 1 are of order one. Consequently a factored implicit 
algorithm is not possible. Similarly, in the second method a factored implicit treat- 
ment of the boundary flux for point i, j, 2 cannot be accomplished. Thus the use 
of the normal momentum equation in a boundary procedure for factored implicit 
algorithms is in principle limited to moderate wall curvature and only small non- 
orthogonality in the grid. Fortunately in most practical situations the grid spacing 
in the c direction is much smaller than the grid spacings along the boundary. The 
resulting coupling of pressure changes at points on 

heat at 
constant volume. Using Eq. (145) one has the identity 

(149) 

For steady-flow calculations, Hung and MacCormack [46] suggest using VH to 
evaluate the wall heat flux, since the total enthalpy H has a more linear behavior 
than E. For unsteady flow, it is probably more appropriate to use V(e/p). In the first 
method of satisfying the boundary conditions, one now integrates both the 
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continuity and energy equation at point i, j, 1 using either Eq. (139) or (142). The 
alternative approach uses the time-differenced forms of the normal momentum 
equation and Eq. (148). These two equations are also used in the second method 
to calculate boundary flux terms when updating Ui,.i,2. 

For the solution of the Euler equations the only boundary condition is Eq. (144). 
In the first method of treating the boundary one would now integrate the 
continuity, energy, and tangential momentum equations at point i, j, 1 using either 
Eq. (139) or (142). Alternatively one could use the time-differenced form of the 
normal momentum equation instead of the continuity or energy equation. Since the 
pressure is the only unknown required to evaluate boundary flux terms, one would 
only need the normal momentum equation to apply the second method. However, 
if the wall curvature is not negligible, the expression for the pressure at point i, j, 1 
involves the velocity and density (as well as the pressure) at neighboring points on 
the boundary. For example, the central difference approximation to the normal 
momentum equation using Eq. (142) produces the boundary terms 

There are several ways to evaluate these new unknown quantities. The simplest is 
to replace them by their values at the closest interior points, with an attendant loss 
of spatial accuracy. A more accurate procedure is extrapolation of interior values 
to the boundary. In the spirit of the conservation laws it is more appropriate to 
extrapolate p and m = pu, with the latter then projected onto the surface to satisfy 
Eq. (144). If the grid is highly non-orthogonal, extrapolation should probably be 
done in the direction normal to the surface, rather than along the [ coordinate. A 
third possibility is to utilize Eq. (139) or (142) to update p and m on the surface 
after the interior points have been updated. This is the most rational procedure and 
should probably be used in the calculation of highly unsteady flows. As discussed 
earlier, an implicit treatment of the pressure at point i, j, 1 is not feasible in a fac- 
tored implicit algorithm for large wall curvature or severe grid non-orthogonality. 

For potential flow there is only one conservation law, and Eq. (144) gives the 
required boundary condition. Due to the manner in which the velocity potential 4 
on the boundary is used in solving the equation at point i, j, 2, one must use the 
first method to satisfy Eq. (144). The proper procedure is to solve Eq. (139). This 
is more accurate than using simple reflection principles. 

Wall Boundary Conditions for Finite- Volume Grid 

Let the wall be a constant i surface and the boundary cell be designated as i, j, 1. 
The boundary face then has the designation i, j, $. The position vectors 

rik 1/2,ji l/2,1 E tcri* 1/2,j+ l/2,3/2 + ri* I/~,J+ l/2,1/2) (151) 
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and ri+ 1/2,j+ 112,112 are the vertices of a boundary half-cell whose center is designated 
as the-point, i, j, i, as shown in Fig. 3. In order to calculate transport terms and 
describe the geometry of the boundary half-cell we require the quantities Si, j,l, 
vi,j,l/29 and S f+ 1/2,j, 112. Sf, j,l is defined by Eq. (60) in terms of the vectors 
ri+ 1/2,jf l/2,1. Vi,j,1/2, and SF+ lp,j,1/2 are defined as twice the corresponding 
expressions for the half-cell. Thus 

~S+1/2,j.1j2~~~i+l/2,j+1/2.1~~i+l/2,j-~~2,~~2~X~~i+1/2.j~1/2,~~~i+l/2,j+1~2.1~2~~ (152) 

When calculating transport terms at points i, j, 1 and i, j, 4 using Eqs. (17) and 
(18) one should use 

(Q,)i,j,l= (Q,)i,,l/2 = 2(Qi,j,l- Q,,j,1/2)/di* (153) 

Applying Eq. (5) to the boundary half-cell centered at the point i, j, i, one 
obtains the second-order accurate expression 

(or)i,j.3/4 +2C(S’.F),j,l -(SC .F),,j,,/21 
~~~.15+1/2,j,3/4-~~-l1/2,j,3/4~E?~j+t/2,3/4-~~j-lJ2,3/4=0~ (154) 

where 

oi,j,3/4Gt(Ui,j,1/2+ ui,j,l) vi,j,l/29 

pf+ 1/2,j,3/4 z ICSf+ 1/2,j,1/2 . (Fi+ 1/2,j,1/2 + Fi+ 1/2,j,lh 
(155) 

etc: 

Note that we use Vi, j,,,2 and Sf+ 1,2, j,1,2 (instead of their values at k = a), since these 
have already been defined so as to satisfy the geometric conditions. 

We can eliminate Ui, j,l using the finite volume approximation for cell i, j, 1. 
Introducing 

B vi,j,1/2/vi,j,lv (156) 

we obtain for point i, j, i the second-order accurate conservative relation 

C”* v)i,j, l/2 - PCS’ . F),,j,3/2 + 4(Sc . F1i.j. 1- (4 - B)(S’ . F),j,1/2 

+~=f+l~2,j,1/2~~~-l1/2,j,1/2+~‘:j+1/2,l/2~~:Zj-lI/2,1/2~0~ (157) 

FIG. 3. Boundary half-cell for finite-volume grid. 
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where 

Ff+ 1/2,j, I/Z E (St . F)z + l/2,/. l/2 + CSf+ I/2,,, 112 - BSf+ 1/2,j, 1) . Fi+ 1/2,j, 1) etc. 

(158) 

The treatment of wall boundary conditions for finite-volume grids basically 
follows that described for finite-difference grids, with Eqs. (139) and (142) replaced 
by Eqs. (154) and (157), and the finite-difference boundary point i, j, 1 replaced by 
the finite-volume boundary point i, j, i. Note that conservation of all conservative 
variables for the entire flow region is automatically satisfied when a finite-volume 
grid is used. The purpose of introducing a boundary half-cell in this case is to relate 
boundary values to interior values in a conservative manner. 

One can again apply the first method of treating the boundary. Note that in this 
case there are two boundary cells, both sharing a common boundary, that need 
special treatment. The boundary variable Ui,j,I now represents an average value of 
U over a cell face instead of a cell-averaged quantity. The points i, j, $ and i, j, 1 
are a half-cell width apart. All these factors make an implicit algorithm more 
involved near the boundary. Nevertheless, it is probably worth pursuing if one 
requires exact conservation in the integral sense and accurate representation of all 
flow variables on the boundary. 

The second method of treating the boundary is obviously the natural one for a 
finite-volume grid. The normal momentum equation based on Eq. (157) can be 
utilized to various degrees of approximation for this purpose. Since the point i, j, 1 
is closer to the boundary than the corresponding point for a finite-difference grid, 
one would expect these approximations to be more accurate for the finite-volume 
grid. 

Zonal Boundaries 

Another situation where the difference in the type of grid is important is the case 
where the boundary is a zonal boundary between two regions with completely dis- 
parate grids. The two types of grids are illustrated in Fig. 4 for 2-dimensional flow. 
For the finite-difference grid, the dots show the location of the grid points in one 
zone, and the squares the grid points in the other zone. A conservative zonal 
boundary procedure requires the interpolation of data between the two grids on the 
zonal boundary and the partitioning of flux on a flux conservation line arbitrarily 
chosen to lie in one of the two zones. Special handling of the fluxes is required on 
sides AFE and BCD of the cell straddling the zonal boundary. Excellent results 
have been obtained in flow calculations using this procedure by Rai C47-491. A 
finite-volume grid adapts more naturally to the zonal boundary, as shown in 
Fig. 4b. The partitioning of the flux can now be carried out directly on the zonal 
boundary, leading to a conceptually simpler algorithm. Calculations using a finite- 
volume grid have been carried out by Rai [SO] and Walters et al. [Sl 1. 

For both types of grids, the above-mentioned zonal procedures carry out the 



FINITE-DIFFERENCE AND FINITE-VOLUME 41 

Ar - - - -  

\  

\  

_ r.F\, _ m ‘,L ZONAL 
I- --I-- BOUNDARY 

/ I 

--+---&--FLUX 

o/o /o /o 
CONSERVATION 
LINE 

(a)  FINITE DIFFERENCE GRlD 

ZONAL 
BOUNDARY 

IL4 FINITE VOLUME GRIO 

FIG. 4. Grids at zonal boundary. 

partitioning of the flux in terms of the normal flux component F,,. As pointed out 
in [47, 511, if the flux conservation line is curved one cannot simultaneously 
conserve the flux and maintain a uniform free stream. However, for a finite-volume 
grid an alternate procedure is possible which can accomplish both objectives. For 
a given boundary cell one can define a separate boundary face for each cell in the 
other region. Thus the zonal boundary of cell 1 in Fig. 4 consists of the three faces 
FE, ED, and DC. If a unique flux is assigned to each boundary face, then both flux 
conservation and free-stream maintenance is possible. For first-order accuracy, the 
flux across FE is calculated from U1 and UZ; the flux across ED from U, and U,; 
and the flux across DC from U, and U,. Higher order flux calculations will involve 
more complex dependence on the values of U in neighboring cells. The MUSCL 
approach, which was also used in [Sl 1, is probably the best one in this situation. 
Note that boundary faces for 3-dimensional zonal boundaries will no longer be 
quadrilaterals in general, and expressions for a general polygonal face must be used 
to calculate surface area vectors. For time-accurate calculations in two and three 
dimensions, more general formulas for volumes of polygons and polyhedra must be 
used, since the boundary cells will in general not be quadrilaterals or hexahedra. 

Grid Singularities 

For ordered grids defined by coordinate transformation (12), grid singularities 
are points where the Jacobian of the transformation is either zero or unbounded. 
These singularities can be divided into two types. One is due to a physical corner 
occurring on a solid boundary that is described by a single coordinate surface. The 
primary grid point defining the corner is called a real singular point. The other type 
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occurs at singular points or curves in the interior of a flow region and also when 
a primary grid point on a smooth solid boundary defines a corner in a coordinate 
surface. Such points are termed topological singuar points. 

The effect of the singular points on the numerical algorithm depends on the type 
of grid. For a finite-volume grid the singular points are cell vertices, and their 
singular nature will not affect the evaluation of geometric quantities based on 
straight line connections. Since the finite volume algorithms do not involve flow 
variables at the cell vertices, the algorithms will also not be affected by real 
singularities. Some modifications in the boundary procedure may be necessary for 
cells whose vertices include topological singular points. In either case a large loss 
in spatial accuracy can be expected, since the singular nature of the grid or the flow 
is ignored in defining average values over cell faces or cell volumes. For a finite- 
difference grid both U and geometric quantities must be defined for the singular 
points. The non-analytic behavior of U at a real singularity cannot be simply 
expressed. Consequently it would be difficult to account for it properly in a numeri- 
cal algorithm. On the other hand, the non-analytic nature of the grid at a singular 
point can be expressed algebraically. This knowledge can be used to devise finite- 
difference algorithms near a topological singularity and to study the accuracy and 
stability of algorithms for both types of grids. 

Previous analysis of grid singularities have been devoted to topological 
singularities in an interior of a flow region which occur on the boundaries of the 
computational space. One example is a spherical point singularity which may be 
introduced in calculating internal flows. A more common example is a singular 
curve, whose singularity is either of polar or parabolic type. Eisen [52] studied the 
numerical solution of the spherically symmetric diffusion equation using central 
differences and explicit time integration. Although his analysis was based on the 
nonconservative form of the equation, he treated the two types of grids that are 
analogous to what we term as finite-difference and finite-volume grids. A limiting 
form of the equation was used to obtain the differencing approximation at the 
singular point for the finite-difference grid. Eisen found that the finite-volume grid 
gave a more stable solution. An alternate stability analysis for this grid was also 
given by Kreiss [53]. Eriksson [54] studied the numerical solution of a 
2-dimensional wave equation in the neighborhood of a parabolic singularity, using 
central differences. He found that the nonconservative scheme for both types of 
grids was unstable, but a conservative finite-volume scheme was stable. The latter 
had a local truncation error of order one near the singularity. A similar analysis for 
a polar singularity gave the same results, except that the truncation error at the 
singularity was now of the order of the grid spacing. 

The above analyses suggest that a conservative discretization in the 
neighborhood of a singularity is important for stability. A finite-volume discretiza- 
tion based on straight line connections results in a large local error if the coordinate 
lines are highly curved near the singularity. A properly formulated finite-difference 
discretization should be capable of achieving higher local accuracy in this case. We 
will illustrate this by considering a topological singularity located on a smooth solid 
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body. The algebraic nature of the grid in the neighborhood of a corner has already 
been utilized to generate algebraic grids with singular corners in [SS]. A similar 
approach will be used to obtain a Navier-Stokes central-difference algorithm near 
an H-type singularity in 2-dimensional flow. 

Figure 5 depicts the grid in the neighborhood of the H-type singularity at 5 = 0 
and q = 0. The part of the coordinate line q = 0 for positive 5 lies on the solid body, 
while the part for negative l lies in the flow. We assume the two parts are normal 
to each other at the singularity. The second method of applying boundary condi- 
tions will be used, with the wall curvature neglected. All calculations that involve 
quantities defined at point 0, 0 will have to be modified. The geometric quantities 
defined in Eqs. (14) and (15) reduce to 

St = r,, x k, Sq=kxrt, V=rt.rsxk (159) 

for two dimensions, where k is the unit normal to the plane. 
Consider first calculations for the grid point 0, 1. The grid is non-analytic 

between this point and the singularity. One can easily show [55] that to a good 
approximation 

r(O, rt) = ro,o + (ro.1 - ro,o) JG (160) 

and 

FIG. 5. Finite-difference grid near an H-type singularity. 
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between these two points. While rs at point 0, 1 is calculated by the ordinary 
central difference formula, rrl is calculated as 

(rrl)o,l = (ro,3,2 - ro,1,2)14. (162) 

With ro, 3/2 obtained from linear interpolation, and ro,1,2 obtained from Eq. (160), 
one can rewrite Eq. (162) as 

(r,)o,l=& C~0.2-~L/5-~~fo,1-~~-~~~0,01. (163) 

The geometric quantities Si,, , Sg, i, Vo,i, (Vt), , , and (VV)~,~ are then obtained 
from Eqs. (159) and (18). 

The discretization of Eq. (20) at point 0, 1 requires modification of the term 

@;,0,1 = &,3,2 - ~a,‘,2Y4 (164) 

e, 3,2 can be calculated by the standard methods in terms of quantities already 
defined. The variation of the flow variables with r is analytic. Therefore between the 
points 0, 0 and 0, 1 we can expect the inviscid part of the flux to satisfy 

W4 rl) = Fo,o + PO,, - Fo.01 J;lldrl. (165) 

Using Eqs. ( 161) and (165) to evaluate &J, i,*, we can write Eq. ( 164) as 

(Qo,, =+& Cfi:,z - &,I - (3 - 1) %,I .Fo,ol (166) 

for the inviscid part of the flux. The transverse component of the transport part of 
the flux has the same behavior as the inviscid part. In calculating the longitudinal 
component, we note from Eqs. (18) and (161) that S” . Vq is approximately constant 
between the points 0, 0 and 0, 1. Assuming that the dependence of both a and Q 
on q is given by Eq. (165), one obtains for the longitudinal transport flux term at 
0, 4 the relation 

(~s’~VvQ,,o,,,,= bo,~+(,&lb o,olW .S”/Vo,I (Qo,1- Qo,o)/& (167) 

The calculations for the grid point - 1, 0 follow the same procedure as for the 
point 0, 1, with the roles of q and 5 reversed. At the point 1, 0 the only quantity 
one requires that must be modified is 

(rc)l,o = 2 d5 L- [r 2,0-~~-~~~1,0-~~-~~~o,ol. (168) 

The only quantity required at the singular point 0, 0 is the normal gradient of Q 
which enters into boundary conditions. It is calculated as 

~~~~Q~o,o=~Q~~,o-Qo,o~/C~-~.o-~o,ol. (169) 
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Note that geometric quantities at the singular point are undefined and are therefore 
never used. If the first method of satisfying boundary conditions is employed, one 
could perform calcutions for the half-polygonal cell associated with the singular 
point, using the concepts described above. 

All the above formulas assume that the grid is sufficiently smooth. If the grid is 
generated algebraically, the techniques presented in [55] can be used to guarantee 
sufficient smoothness. In numerical grid generation schemes based on the solution 
of partial differential equations, the corner in the v= 0 curve will propagate into the 
interior using the standard procedures. One must therefore use the above concepts 
to modify the numerical grid generation scheme. This involves using approxima- 
tions such as Eqs. (160) and (161) to derive appropriate difference approximations 
to partial derivatives similar to Eqs. (163) and (168). 

For a finite-volume grid, second-order accuracy requires that average values are 
based on linear variation of the physical quantities. Geometric quantities are 
calculated assuming straight line connections. The finite volume method is 
inherently incapable of accounting for the curvature and non-analytic behavior of 
the grid near the singular point. Consequently, there is no simple way to modify a 
finite-volume algorithm near the topological singularity to obtain second-order 
accuracy. 

STRONG AND WEAK CONSERVATION 

The analysis in this paper has been carried out using vector notation, even 
though all computations are ultimately performed in terms of scalar components. 
This was done for two different reasons. The formulation in terms of physical 
vectors is more compact and gives more emphasis to the physical content of the 
numerical methods. Second, there are a number of different ways to obtain scalar 
equations from the vector equations. Most of them are motivated by a desire to 
keep the equations in strong conservation-law form. This terminology was coined 
by this author in his earlier paper devoted to the differential formulation of conser- 
vation laws [l]. It refers to the form of Eq. (13) in the absence of true, physical 
source terms (P= 0), in which all terms are derivatives with respect to the inde- 
pendent variables, The decomposition of the vector momentum equation into scalar 
equations in terms of curvilinear velocity components results in additional undif- 
ferentiated terms that act like fictitious sources. This has been termed a weak con- 
servation-law form by the author. Various methods of obtaining scalar equations in 
strong conservation-law form are discussed in [ 11. The one most often used ir 
practice is to write the Cartesian components of the vector conservation law. 
Actually, in some algorithms (e.g., [56]) it is advantageous to employ the weak 
conservation-law form. 

In the section treating moving grids we encountered another situation that is 
normally thought to require the weak conservation-law form-namely the use of a 
non-inertial reference frame. It was shown there how the strong form can be preser- 
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ved by using the absolute velocity. There are two other situations that result from 
ignoring a space dimension in which the equations are usually expressed in weak 
conservation-law form. They are quasi-one-dimensional and axisymmetric flow. We 
now show that in a proper finite-volume formulation, the undifferentiated terms 
become boundary terms for the ignored direction. Thus the integral conservation 
law can always be satisfied for these cases. 

Quasi One-Dimensional Flow 

The differential formulation of quasi-one-dimensional flow results from applying 
the coordinate transformation x(l) to a l-dimensional channel whose cross- 
sectional area vector is 

S = S(x)i, (170) 

where i is the unit vector in the x-direction. In terms of the cell volume V= Sx, and 
the velocity component u = i . u, the continuity and energy equations for inviscid 
flow become 

(Pa + (PUS), = 0 (171) 

(eV),+ [(e+p)uSJ5=0. (172) 

Since there is no flux of mass or energy at the wall, these two equations are in 
strong conservation-law form. The momentum equation is usually written as 

(PO+ c(P+P~2w1t-Ps~=o. (173) 

The source term pS, results from the pressure acting on the channel walls. 
In order to circumvent the weak conservation-law form, some investigators (see 

[57]) write the momentum equation in the quasi-conservative form 

(PU VT + (PU2S)c + SP, = 0, (174) 

in which differential terms are multiplied by geometric quantities. While this form 
is strictly not conservative, it satisfies the weak form of the jump conditions (11) 
and should possess the appropriate shock capturing capability. On the other hand, 
the weak form is only apparent, not real. A finite-volume discretization of the 
momentum conservation law for cell i gives 

Here pwi is the average pressure acting on the cell wall, while pi is the average value 
of p throughout the cell. Thus the source term is actually a boundary term. The 
boundary condition that relates the two pressures is derived from the transverse 
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momentum equation. According to the quasi-one-dimensional approximation, this 
relation is 

Poi x Pi* (176) 

Thus the undifferentiated term only appears to be an interior source term when 
relation (176) is used as an exact identity to eliminate pwi in Eq. (175). When one 
realizes that Eq. (176) is only an approximate relation, resulting from the 
approximate solution of the transverse momentum equation, one sees that the last 
term in Eq. (175) is really a transverse boundary term. It should be treated in an 
algorithm in the same manner as any other boundary term. 

The proper way to discretize the equations is to apply the conservation laws to 
the primery grid cells, which are defined by specifying the values of xi+ 1,2 and 
si + l/2 at the cell boundaries. In a finite-volume discretization, one also needs the 
cell volumes, which are given by 

vi = ttxi + l/2 - xi- 1/2Msi+ l/2 + si- l/2). (177) 

Due to the quasi-one-dimensional approximation, the above relation is valid for 
both planar and axisymmetric flow. One can also apply the finite-volume method 
to secondary grid cells, with special treatment of the half-cells at the two ends of 
the channel. 

Axisymmetric Flow 

The differential formulation of axisymmetric llow differs from the 2-dimensional 
case primarily in the definition of geometric quantities. If k is the unit normal to 
the ?j, q plane, and y is the distance from the axis of symmetry, then one uses 

ri = k (178) 

for 2-dimensional flow and 

r,=yk (179) 

for axisymmetric flow in Eqs. (14) and (15). Since S’= SCk, one can also write 
V= Sr for 2-dimensional flow and V= ySc for axisymmetric flow. The strong 
conservation-law form (20) with P = 0 and the c derivative term absent results for 
both flows, except for the momentum equation. If j is the unit normal to the axis 
of symmetry in the 5, v plane, and u = j .u, then the momentum equation in the j 
direction for axisymmetric, inviscid flow is usually written as 

(puySC), + (EC), + (Eqq -ps = 0. (180) 

The weak conservation-law form of Eq. (180) is again only apparent. The conser- 
vation law should really be applied to a wedge-shaped region of angular width &, 

581/81/l-4 
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where cp is the circumferential angle. Each cell extends between the two planar faces 
of the wedge, which act as cell boundaries in the circumferential direction. There is 
no convection of fluid through these boundaries, and the only contribution to the 
flux is the pressure in the momentum equation. The circumferential component of 
that equation is identically satisfied by axial symmetry. A finite-volume discretiza- 
tion of the radial component for cell i, j gives 

C(Puv)zli,j+p=5 r+ 112,j -ff- I12,j+~~j+1/2-EZj~1/2 

-5 (phSr)i,jsin$=O. (181) 

The last term represents the contributions from the two circumferential boundaries, 
where (p,], is the average pressure acting on the lateral faces of cell i, j. Terms 
such as Ff, 1,2,j are defined as in Eq. (72), while the geometric quantities are 
calculated from Eqs. (67)-(69). The condition of axial symmetry yields the bound- 
ary condition 

(Pb)i, j =Pi, j- (182) 

Note that this relation is not exact, since the average pressure acting on a lateral 
surface does not equal the pressure determined by the conservative variables 
averaged over the cell. Since the angular width Atp is arbitrary, we can make the 
further approximation 

2 . Aqxl JG sm 2 . 
Actually, by choosing A~J small enough, one can make the error in Eq. (183) less 
than the round-off error in the computation, so that Eq. (183) becomes effectively 
an identity. We thus again find that the undifferentiated term only appears to be an 
interior source term when relations (182) and (183) are used in Eq. (181), 

The proper way to discretize the equations is to apply the conservation laws to 
primary grid cells. The axis of symmetry then serves as a boundary of zero surface 
area for a row of wedged-shaped cells and consequently does not contribute to any 
flux calculations for those cells. One thus avoids any difficulties due to the axis 
singularity. 

In summary, we have demonstrated for both quasi-one-dimensional and axisym- 
metric flow that a finite-volume discretization applied to primary grid cells enables 
us to preserve the strong conservation-law form. The undifferentiated terms are 
actually boundary terms for the flow region and should be handled in the same 
manner as other flow region boundary terms. While the axisymmetric case was 
derived for an inviscid flow, it can be readily extended to a viscous flow by 
including the normal viscous stress in calculating the force acting on the lateral 
surface. 
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CONCLUDING REMARKS 

This survey of finite-difference and finite-volume approaches has revealed that 
comparisons must be made on two levels. The differences in methods (differential 
vs integral) leads to differences in the way geometric terms are handled. These affect 
questions of accuracy and programming efficiency but are not of a fundamental 
nature. In fact, many algorithms use a combination of both approaches. The dif- 
ferences in grids are more fundamental and affect many problems related to com- 
putational boundaries. The choice between the two depends on the nature of the 
boundary. Zonal boundaries are more naturally treated with a finite-volume grid. 
In order to achieve strong conservation, a finite-volume grid is also more natural 
for quasi-one-dimensional and axisymmetric flows. On the other hand, greater 
accuracy can be achieved near a topological singularity using a finite-difference 
grid. At a general boundary, such as a solid wall, the choice is not clear-cut. Any 
boundary procedure can be adapted to either type of grid. The ultimate choice will 
be determined by programming efficiency and stability considerations. 

There is another class of discretization schemes which utilize both the finite- 
volume and finite-difference grids. Examples of these hybrid schemes are those of 
Ni [SS] and Roe [59]. The conservation law is first applied to the primary cells. 
The changes in conservative variables are then rezoned in a conservative manner to 
yield the changes in the secondary cells. These are then used to update the conser- 
vative variables in the secondary cells. Since these schemes do not strictly lit into 
either of the classifications according to our definitions, they should properly be 
considered a class onto themselves. 

There is a superficial resemblance between the finite-volume and finite-element 
methods and much semantic confusion in the literature between the two concepts. 
The author has addressed this question in a previous publication [60]. Conven- 
tional nodal finite-element methods define the unknowns at cell vertices of a 
primary grid which is usually unordered, consisting of triangles in two dimensions 
and tetrahedra in three dimensions. The methods do not satisfy the integral conser- 
vation laws for these cells. Thus, even though they can be formulated in a manner 
that provides shock capturing, they cannot be related to finite-volume methods. 
Several recent papers [61,62] claim to employ the finite-element method to satisfy 
Eq. (1). But according to the definitions used in this paper, these methods can 
be classified as either finite-volume or finite-difference methods applied to an 
unordered grid. 

In [61], a secondary grid with piecewise straight connections is defined by con- 
necting the centroids of the faces of the tetrahedra to the centroids of the primary 
cells with straight lines. The resulting algorithm is just a finite-volume method 
applied to the secondary cells. The evaluation of gradients used in a higher order 
MUSCL scheme can be interpreted as based on the conservative definition (89) 
applied to the primary cells. In [62], conservation at each grid point is applied to 
a control volume which is the union of all the tetrahedra having this point as a 
vertex. Thus the conservation is effectively carried out over sets of overlapping 
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doubly sized cells. It is therefore appropriate to consider this a finite-difference 
algorithm applied to an unordered grid. 

APPENDIX: CALCULATION OF ROE-AVERAGED EIGENVALUES 

All the calculations in this Appendix are carried out for u,, = 0, y = 1.4, and 
pL = pR. It follows from Eq. (40) that c1= 0.5. 

Case 1. In this case the velocity change uR - u, is assumed to be directed along 
the surface normal n. Given 

c,q = 1.2c, 

u;. = 0.995c, (184) 
u; = 1.205c,. 

These conditions define a transonic expansion wave. Using Eqs. (39) and (42), one 
determines for A3 the values 

ajL = -o.o05c, 

a,, = o.O05c, (185) 
& = -0.005533808~~. 

Note that X, does not lie between A,, and &. 

Case 2. By increasing the normal velocity, we can convert Case 1 to 

CR = 1.2c, 

u;. = 1.002c, (186) 

24; = 1.2102c,. 

These conditions correspond to a supersonic expansion. The values of Aj are now 

&. = o.O002c, 

a,, = o.o102c, (187) 

2, = -0.000333808~~. 

Note that the Roe-averaged normal velocity is now subsonic, even though both u; 
and & are supersonic. 

Case 3. This case illustrates that anomalous behavior can result just from a 
velocity change tangential to the surface. For concreteness we assume that uL, uR, 
and n are coplanar. Defining 

24,~ III - u,nl, (188) 
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we consider the conditions 
cR=cL 

u; = l.Olc, 

24; = l.O2c, 

51 

(188) 

The normal velocity components again define a supersonic expansion. The values 
of A, are now 

A,, = O.Olc, 

A,, = o.o2c, (189) 

2, = -0.009697516~~. 

The Roe-averaged normal velocity for this case is also subsonic. 

These three illustrative calculations indicate that conditions can exist for which 
the Roe-averaged eigenvalue lies outside the range determined by the states 
L and R. 
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